Data Abstraction

Announcements

Discussion 4

Max Product

Write a function that takes in a list and returns the maximum product that can be formed using non-consecutive elements of the list. All numbers in the input list are greater than or equal to 1.
def max_product(s):
"""Return the maximum product that can be
formed using non-consecutive elements of s.
>>> max_product([10, 3, 1, 9, 2]) \# 10 * 9
90
>>> max_product([5, 10, 5, 10, 5]) \# 5 * 5 * 5
125
>>> max_product([])
1
""."
if len(s) == 0:
return 1
elif len(s) == 1:
return s[0]
else:
return
\qquad

```
Either include s[0] but not s[1], OR
Don't include s[0]
```

 \(\max (\mathrm{s}[0]\) * max_product(s[2:]), max_product(s[1:]))

Sum Fun

Implement sums(n, m), which takes a total \mathbf{n} and maximum m. It returns a list of all lists:

- that sum to n,
- that contain only positive numbers up to m, and - in which no two adjacent numbers are the same.
>>> sums $(5,3)$
$[[1,3,1],[2,1,2],[2,3],[3,2]]$ >> sums $(5,5)$
$[[1,3,1],[1,4],[2,1,2],[2,3],[3,2],[4,1],[5]]$

$$
\begin{aligned}
& {[1,3,1]=[1]+[3,1]} \\
& {[2,1,2]=[2]+[1,2]} \\
& {[2,3]=[2]+[3]} \\
& {[3,2]=[3]+[2]} \\
& {[1,1,3]}
\end{aligned}=[1]+[1,3],\left[\begin{array}{ll}
{[1,2,2]} & =[1]+[2,2]
\end{array}\right.
$$

```
def sums(n, m):
```

 if \(n<0\) :
 return []
 if \(\mathrm{n}=0\) :
 sums_to_zero = [] \# The only way to sum to zero using positives
 return [sums_to_zero] \# Return a list of all the ways to sum to zero
 result = []
 for \(k\) in range(1, m + 1): [k]+rest \(k\) ! \(=\) rest[0]
 result = result + [___ for rest in ___ if rest =_ [] or ___]
 return result
 Slicing Practice

Spring 2023 Midterm 2 Question

Definition. A prefix sum of a sequence of numbers is the sum of the first n elements for some positive length n .
(a) (4.0 points)

Implement prefix, which takes a list of numbers s and returns a list of the prefix sums of s in increasing order of the length of the prefix.

```
def prefix(s):
    """Return a list of all prefix sums of list s.
```

 >>> prefix([1, 2, 3, 0, 4, 5])
 [1, 3, 6, 6, 10, 15]
 >>> prefix([2, 2, 2, 0, -5, 5])
 \([2,4,6,6,1,6]\)
 """ sum(s[:k+1]) range(len(s))

(a)
(b)
ii. (1.0 pt) Fill in blank (b).
○ [s]
Os[1:]range (s)range(len(s))

Tree Recursion with Strings

Parking

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking spots using \% for a motorcycle, <> for a car, and . for an empty spot.
For example: '.\%\%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement park, which returns a list of all the ways, represented as strings, that vehicles can be parked in n adjacent parking spots for positive integer n. Spots can be empty.

```
def park(n):
    >>> park(1)
    ['%', '.']
    >>> park(2)
    29
    """"
    if n<0:
        n<0: []
    elif n == 0:
```

 """Return the ways to park cars and motorcycles in n adjacent spots.
 ['\%\%', '\%.', '.\%', '..', '<>']
 >>> len(park(4)) \# some examples: '<><>', '.\%\%.', '\%<>\%', '\%.<>'
 return ['י]
 park(3):
$\% \% \%$
$\% \%$.
$\%$ \%
\%.
\%<>
. \% \%
.
..\%
...
<> $<>$
<>.
else:
return $\left[{ }^{\prime} \%{ }^{\prime}+\mathrm{s}\right.$ for s in $\left.\operatorname{park}(\mathrm{n}-1)\right]+\left['^{\prime}+\mathrm{s}\right.$ for s in $\left.\operatorname{park}(\mathrm{n}-1)\right]+\left[{ }^{\prime}<>^{\prime}+\mathrm{s}\right.$ for s in $\left.\operatorname{park}(\mathrm{n}-2)\right]$

Dictionaries

\{'Dem': 0\}

Dictionary Comprehensions

\{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>\}

Short version: \{<key exp>: <value exp> for <name> in <iter exp>\}

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between representation and use
-How data are represented (as some underlying list, dictionary, etc.)

- How data are manipulated (as whole values with named parts)
E.g., refer to the parts of a line (affine function) called f:
-slope(f) instead of $f[0]$ or $f[$ 'slope']
-y_intercept(f) instead of $f[1]$ or f['y_intercept']

Why? Code becomes easier to read \& revise; later you could represent a line f as two points instead of a [slope, intercept] pair without changing code that uses lines.

