Data Abstraction

Announcements

Discussion 4

Max Product

Write a function that takes in a list and returns the maximum product that can be formed
using non-consecutive elements of the list. AlLl numbers in the input list are greater than

or equal to 1. _ o _
A tip for finding a recursive process:

1.Pick an example: s = [5, 10, 5, 10, 5]

def max_product(s): 2.Write down what recursive calls will do:
"""Return the maximum product that can be - max_product([10, 5, 10, 5]) - 10 * 10
formed using non-consecutive elements of s. — max_product([5, 10, 5]) -5 %5
- max_product([10, 5]) - 10
>>> max_product([10, 3, 1, 9, 2]) # 10 x 9 — max_product([5]) -~ 5
90 3.Which one helps build the result?
>>> max_product([5, 10, 5, 10, 5]) # 5 x 5 x 5
125
>>> max_product([]) Either include s[@] but not s[1], OR
L Don't include s[0]
if len(s) ==
return 1 Choose the larger of:
elif len(s) == 1: multiplying s[@] by the max_product of s[2:] (skipping s[1]) OR
return s[0] just the max_product of s[1:] (skipping s[@])
else:

return max(s[@] * max_product(s[2:]1), max_product(s[1:]))

Sum Fun

Implement sums(n, m), which takes a total n and maximum m. It returns a list of all lists:
« that sum to n,

- that contain only positive numbers up to m, and
« in which no two adjacent numbers are the same.

[1, 3, 11 = [1] + [3, 1]
[2, 1, 2] = [2] + [1, 2]

() [2, 3] = [2] + [3]
>>> sums(5, 3 =
[(1, 3, 11, 12, 1, 21, [2, 31, [3, 21 3,721 = 13] + [2]
>>> sums(5, 5) 5131+ = (] + [1), 3]
(ry, 3, 11, I[1, 41, [2, 1, 2], (2, 31, [3, 2], [4, 1], [5]] td—221= [1] + [, 2
def sums(n, m):
if n < 0:
return []
if n ==
sums_to_zero = [] # The only way to sum to zero using positives

return [sums_to_zero] # Return a list of all the ways to sum to zero

result = []

for k in range(1, m + 1): [kl+rest sums (n-k,m) k !'= rest[0]
result = result + [for rest in if rest == [] or

return result

]

Slicing Practice

Spring 2023 Midterm 2 Question

Definition. A prefixr sum of a sequence of numbers is the sum of the first n elements for some positive length n.
(a) (4.0 points)

Implement prefix, which takes a list of numbers s and returns a list of the prefix sums of s in increasing
order of the length of the prefix.

def prefix(s):
"""Return a list of all prefix sums of list s.

>>> prefix([1, 2, 3, 0, 4, 5])

DA e ii. (1.0 pt) Fill in blank (b).
>>> prefix([2, 2, 2, 0, -5, 5]) O s
[2, 4, 6, 6, 1, 6]
nun sum(s[:k+1]) range(len(s)) O Ls]
return [_________ tor k In =] O s[1:]
(a) (b)
O range(s)

) range (len(s))

Tree Recursion with Strings

Parking

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement park, which returns a list of all the ways, represented as strings, that vehicles
can be parked in n adjacent parking spots for positive integer n. Spots can be empty.

def park(n): IS

"""Return the ways to park cars and motorcycles in n adjacent spots. %%%
>>> park(1) %
['ss', '] ©a
>>> park(2) %
['%%', '%.', %', .., <] %5<>
>>> len(park(4)) # some examples: '<><>', '.%%.', '%<>%', '%.<>' 5%
29 %
if n < 0: [l "

return ___ "~ <>
elif n == 0: =5

return _[""] b
else:

return '%s'+s for s in park(n-1)] + ['.'+s for s in park(n-1)] + ['<>'+s for s in park(n-2)]

Dictionaries

{'Dem': 0}

Dictionary Comprehensions

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

How data are represented (as some underlying list, dictionary, etc.)

How data are manipulated (as whole values with named parts)

E.g., refer to the parts of a line (affine function) called f:
-slope(f) instead of f[0] or f['slope'l
-y_intercept(f) instead of f[1] or f['y_intercept']

Why? Code becomes easier to read & revise; later you could represent a line f as two
points instead of a [slope, intercept] pair without changing code that uses lines.

