
Trees



Announcements



Data Abstraction



Data Abstraction

A small set of functions enforce an abstraction barrier between 
representation and use 

• How data are represented (as some underlying list, dictionary, etc.) 

• How data are manipulated (as whole values with named parts)

4

E.g., refer to the parts of a line (affine function) called f: 

• slope(f) instead of f[0] or f['slope'] 

• y_intercept(f) instead of f[1] or f['y_intercept'] 

Why? Code becomes easier to read & revise; later you could represent a line f as a 
Python function or as two points instead of a [slope, intercept] pair without 
changing code that uses lines.



Trees



Tree Abstraction

6

Recursive description (wooden trees): 

A tree has a root label and a list of branches 

Each branch is a tree 

A tree with zero branches is called a leaf 

A tree starts at the root

2

3

1

0 1

Relative description (family trees): 

Each location in a tree is called a node 

Each node has a label that can be any value 

One node can be the parent/child of another 

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node



Using the Tree Abstraction

For a tree t, you can only: 

•Get the label for the root of the tree: label(t) 

•Get the list of branches for the tree: branches(t) 

•Get the branch at index i, which is a tree: branches(t)[i] 

•Determine whether the tree is a leaf: is_leaf(t) 

•Treat t as a value: return t, f(t), [t], s = t, etc.

7

(Demo)



Implementing the Tree Abstraction

• A tree has a root label 
and a list of branches  

• Each branch is a tree

8

>>> tree(3, [tree(1), 
...          tree(2, [tree(1),  
...                   tree(1)])]) 
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
   return [label] + branches

def label(tree): 
    return tree[0] 

def branches(tree): 
    return tree[1:]



Implementing the Tree Abstraction

(Demo)

9

    for branch in branches: 
        assert is_tree(branch) 
    return [label] + list(branches)

def is_leaf(tree): 
    return not branches(tree)

Verifies that 
tree is bound 

to a list

Creates a list 
from a sequence 

of branches

def label(tree): 
    return tree[0] 

def branches(tree): 
    return tree[1:]

def is_tree(tree): 
    if type(tree) != list or len(tree) < 1: 
        return False 
    for branch in branches(tree): 
        if not is_tree(branch): 
            return False 
    return True

def tree(label, branches=[]):
Verifies the 

tree definition

• A tree has a root label 
and a list of branches  

• Each branch is a tree

>>> tree(3, [tree(1), 
...          tree(2, [tree(1),  
...                   tree(1)])]) 
[3, [1], [2, [1], [1]]]

2

1

3

1

1



Tree Processing



Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function 

The recursive case typically makes a recursive call on each branch, then aggregates

11

def count_leaves(t): 

    """Count the leaves of a tree.""" 

    if is_leaf(t): 

        return 1 

    else: 

        branch_counts = [count_leaves(b) for b in branches(t)] 

        return sum(branch_counts)



Writing Recursive Functions

Make sure you can answer the following before you start writing code: 

• What recursive calls will you make? 

• What type of values do they return? 

• What do the possible return values mean? 

• How can you use those return values to complete your implementation?

12



Example: Largest Label

Processing a leaf is often the base case of a tree processing function 

The recursive case typically makes a recursive call on each branch, then aggregates

13

def largest_label(t): 

    """Return the largest label in tree t.""" 

    if is_leaf(t): 

        return __________ 

    else: 

        return ____([_________________ for b in branches(t)] + ___________)

label(t)

max [label(t)]largest_label(b)



Example: Largest Label

Processing a leaf is often the base case of a tree processing function 

The recursive case typically makes a recursive call on each branch, then aggregates

14

def above_root(t): 

    """Print all the labels of t that are larger than the root label.""" 

    def process(u): 

        if ____________________: 

            print(_________) 

        for b in branches(__): 

            process(b) 

    process(t) 

label(u) > label(t)

label(u)

u


