How Fast Is This (I)?

For this program:
```
for x in range(N):
    if L[x] < 0:
        c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)
- How about here?
```
for x in range(N):
    if L[x] < 0:
        c += 1
        break
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)
- How about here?
```
for x in range(N):
    if L[x] < 0:
        c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)
- How about here?
How Fast Is This (II)?
• Assume that execution of f takes constant time.
• What is the complexity of this program, measured by number of calls to f?

```python
for x in range(2*N):
    f(x, x, x)
for y in range(3*N):
    f(x, y, y)
for z in range(4*N):
    f(x, y, z)
```

Answer: $\Theta(N^3)$

How Fast Is This (III)?
• What is the complexity of this program, measured by number of calls to f?

```python
for x in range(N):
    for y in range(x):
        f(x, y)
```

Answer: $\Theta(N^2)$

This is an arithmetic series $0 + 1 + 2 + \cdots + N - 1 = N(N - 1)/2 \in \Theta(N^2)$. Why not $\Theta(2N + 6N^2 + 2N^3)$?

That's correct, but equivalent to the simpler answer of $\Theta(N^2)$. Why not $\Theta(2N + 6N^2 + 2N^3)$? That's correct, but equivalent to the simpler answer of $\Theta(N^2)$. Why not $\Theta(2N + 6N^2 + 2N^3)$?
How Fast Is This (IV)?

• What about this one, measured by number of calls to \(f \)?

• How about measured by number of comparisons (\(<\)):

\[
z = 0 \\
\text{for } x \text{ in range}(N): \\
\text{for } y \text{ in range}(N): \\
\text{while } z < N: \\
f(x, y, z) \\
z += 1
\]

\(\Theta(N) \) calls to \(f \).

\(\Theta(N^2) \) comparisons.

In practice, which measure (calls to \(f \) or comparisons) would matter?

• Depends on size of \(N \), actual cost of \(f \). For large enough \(N \), comparisons will matter more.

Avoiding Redundant Computation

• Consider again the classic Fibonacci recursion:

\[
def \text{fib}(n): \\
\text{if } n \leq 1: \\
\quad \text{return } n \\
\text{else:} \\
\quad \text{return fib}(n-1) + \text{fib}(n-2)
\]

• This is tree recursion with a serious speed problem.

• Computation of, say \(\text{fib}(5) \) computes \(\text{fib}(2) \) several times, because both \(\text{fib}(4) \) and \(\text{fib}(3) \) compute it, and both \(\text{fib}(5) \) and \(\text{fib}(4) \) compute \(\text{fib}(3) \). Computing time grows exponentially.

• The usual iterative version does not have this problem because it saves the results of the recursive calls (in effect) and reuses them.

\[
def \text{fib}(n): \\
\text{if } n \leq 1: \\
\quad \text{return } n \\
a, b = 0, 1 \\
\text{for } k \text{ in range}(2, n+1): \\
a, b = b, a+b \\
\text{return } b
\]

Change Counting

• Consider the problem of determining the number of ways to give change for some amount of money:

\[
count \text{change}(\text{amount}, \text{coins} = (50, 25, 10, 5, 1))
\]

• In practice, which measure (calls to \(f \) or comparisons) would matter?

\[
count \text{change}(\text{amount}, \text{coins} = (50, 25, 10, 5, 1))
\]

• How about measured by number of comparisons (\(< \))?

• What about this one, measured by number of calls to \(f \)?
Memoizing

• Extending the iterative Fibonacci idea, let's keep around a table ("memo table") of previously computed values.
• Consult the table before using the full computation.
• Example:

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = {}
    def count_change(amount, coins):
        if (amount, coins) not in memo_table:
            memo_table[(amount,coins)] = full_count_change(amount, coins)
        return memo_table[(amount,coins)]
    def full_count_change(amount, coins):
        # original recursive solution goes here verbatim
        return count_change(amount, coins)
```

Question: how could we test for infinite recursion?

Optimizing Memoization

• Used a dictionary to memoize `count_change`, which is highly general, but can be relatively slow.
• More often, we use arrays indexed by integers (lists in Python), but the idea is the same.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = [[-1] * (len(coins)+1) for i in range(amount+1)]
    def count_change(amount, coins):
        if amount < 0:
            return 0
        elif memo_table[amount][len(coins)] == -1:
            memo_table[amount][len(coins)] = full_count_change(amount, coins)
        return memo_table[amount][len(coins)]
    def full_count_change(amount, coins):
        if amount == 0:
            return 1
        elif len(coins) == 0 or amount < 0:
            return 0
        else:
            return count_change(amount, coins[1:]) + count_change(amount-coins[0], coins)
        return count_change(amount,coins)
```

Order of Calls

• Going one step further, we can analyze the order in which our program ends up filling in the table.
• So consider adding some tracing to our memoized `count_change` program:

```python
@trace
def full_count_change(amount, coins):
    if amount == 0:
        return 1
    elif len(coins) == 0 or amount < 0:
        return 0
    else:
        return count_change(amount, coins[1:]) + count_change(amount-coins[0], coins)
```

Result of Tracing

• Consider `count_change(57)` (returns only):

```
full_count_change(57, ()) -> 0  # Need shorter 'coins' arguments
full_count_change(56, ()) -> 0  # first.
...
full_count_change(1, ()) -> 0  # For same coins, need smaller amounts first.
full_count_change(1, (1,)) -> 1
full_count_change(2, (5, 1)) -> 1
full_count_change(7, (5, 1)) -> 2
...
full_count_change(57, (1,)) -> 12
full_count_change(2, (5, 1)) -> 1
full_count_change(7, (25, 10, 5, 1)) -> 2
full_count_change(32, (25, 10, 5, 1)) -> 18
full_count_change(57, (25, 10, 5, 1)) -> 60
full_count_change(7, (50, 25, 10, 5, 1)) -> 2
full_count_change(57, (50, 25, 10, 5, 1)) -> 62
```

Dynamic Programming

• Now rewrite `count_change` to make the order of calls explicit, so that we needn't check to see if a value is memoized.
• Technique is called dynamic programming (for some reason).
• We start with the base cases (0 coins) and work backwards.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = [[-1] * (len(coins)+1) for i in range(amount+1)]
    def count_change(amount, coins):
        if amount < 0:
            return 0
        else:
            return memo_table[amount][len(coins)]
    def full_count_change(amount, coins):
        for a in range(0, amount+1):
            memo_table[a][0] = full_count_change(a, ())
        for k in range(1, len(coins) + 1):
            for a in range(1, amount+1):
                memo_table[a][k] = full_count_change(a, coins[-k:]),
        return count_change(amount, coins)
```