
Inheritance

Announcements

Lab 6 Review

Lab 6: Email

4

class Email:
 def __init__(self, msg, sender, recipient_name):
 self.msg = msg
 self.sender = sender
 self.recipient_name = recipient_name
class Server:
 """Each Server has a dictionary from client names to client objects."""
 def __init__(self):
 self.clients = {}

 def send(self, email):
 """Append the email to the inbox of the client it is addressed to."""

 ____________________________________.inbox.append(email)

 def register_client(self, client):
 """Add a client to the dictionary of clients."""

 ____________[____________] = _______
class Client:
 """A client has a server, a name (str), and an inbox (list)."""
 def __init__(self, server, name):
 self.inbox = []
 self.server = server
 self.name = name
 server.register_client(____________)

 def compose(self, message, recipient_name):
 """Send an email with the given message to the recipient."""

 email = Email(message, ____________, _______________)
 self.server.send(email)

self.clients[email.recipient_name]

self.clients client.name client

self

self recipient_name

Sending an email:
>>> s = Server()
>>> a = Client(s, 'John')
>>> b = Client(s, 'Jack')
>>> a.compose('Hi!', 'Jack')
>>> b.inbox[0].msg
'Hi!'

Lab 6: Make Change

def make_change(amount, coins):
 """Return a list of coins that sum to amount, preferring the smallest coins
 available and placing the smallest coins first in the returned list."""
 if not coins:
 return None
 smallest = min(coins)
 rest = remove_one(coins, smallest)
 if amount < smallest:
 return None

 elif amount == smallest:

 return ___________

 else:

 result = make_change(________________, rest)
 if result:
 return ____________________
 else:
 return make_change(amount, rest)

5

[smallest]

[smallest] + result

amount-smallest

{2: 2, 3: 2, 4: 3, 5: 1}25

-> 2
-> {2: 1, 3: 2, 4: 3, 5: 1}

-> [3, 3, 4, 4, 4, 5]
23

[2] + [3, 3, 4, 4, 4, 5] -> [2, 3, 3, 4, 4, 4, 5]

Attributes & Methods

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

7

Class Attributes

A class attribute can be accessed from either an instance or its class. There is only one
value for a class attribute, regardless of how many instances.

8

class Transaction:
 """A logged transaction.

 >>> s = [20, -3, -4]
 >>> ts = [Transaction(x) for x in s]
 >>> ts[1].balance()
 17
 >>> ts[2].balance()
 13
 """
 log = []

 def __init__(self, amount):
 self.amount = amount
 self.prior = list(self.log)
 self.log.append(self)

 def balance(self):
 return self.amount + sum([t.amount for t in self.prior])

Equivalently: list(type(self).log)

(Demo)

amount: -3
prior:

Transaction instance

amount: -4
prior:

Transaction instance

amount: 20
prior:

Transaction instance

empty list

log:
...

Transaction class List

Always bound to some
Transaction instance

Accessing Attributes

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> tom_account.balance
10

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

•One of its instance attributes, or

•One of the attributes of its class

10

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

Example: Close Friends
class Friend:
 def __init__(self, name):
 self.name = name
 self.heard_from = {}

 def hear_from(self, friend):
 if friend not in self.heard_from:
 self.heard_from[friend] = 0
 self.heard_from[friend] += 1
 friend.just_messaged = self

 def how_close(self, friend):
 bonus = 0

 if ______________________________ and ______________________________:
 bonus = 3

 return ______________________________ + bonus

 def closest(self, friends):

 return max(friends, key=______________________________)
11

hasattr(self, 'just_messaged') self.just_messaged == friend

friend.heard_from.get(self, 0)

A Friend instance tracks the number of times they
hear_from each other friend.
A Friend just_messaged the friend that most recently
heard from them.
how_close is one Friend (self) to another (friend)?
• The number of times friend has heard from self
• Plus a bonus of 3 if they are the one that most
recently heard from self

self's closest friend among a list of friends is the
one with the largest self.how_close(friend) value

self.how_close

Inheritance

or
 return super().withdraw(amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

13

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

14

Example: Three Attributes

class A:
 x, y, z = 0, 1, 2

 def f(self):
 return [self.x, self.y, self.z]

class B(A):
 """What would Python Do?

 >>> A().f()

 [0, 1, 2]

 >>> B().f()

 """
 x = 6
 def __init__(self):
 self.z = 'A'

15

[6, 1, 'A']

x: 0
y: 1

A class

z: 2

x: 6
B class

z: 'A'
B instance

A instance

