
Efficiency

Announcements

Tree Class

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

4

A Tree has a label and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):
 if n == 0 or n == 1:
 return tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = label(left) + label(right)
 return tree(fib_n, [left, right])

Tree Practice

Example: Count Twins
Implement twins, which takes a Tree t. It return the number of pairs of sibling nodes whose
labels are equal.

def twins(t):
 """Count the pairs of sibling nodes with equal labels.

 >>> t1 = Tree(3, [Tree(4, [Tree(5), Tree(6)]), Tree(4, [Tree(5), Tree(5)])])
 >>> twins(t1) # 4 and 5
 2
 >>> twins(Tree(1, [Tree(1, [Tree(2)]), Tree(2, [Tree(2)])]))
 0
 >>> twins(Tree(8, [t1, t1, t1])) # 3 pairs of twins at the top, plus 2 in each branch
 9
 """
 count = 0
 n = _______________
 for i in range(n-1):
 for j in range(i+1, n):
 if __:
 count += 1
 return __

6

len(t.branches)

t.branches[i].label == t.branches[j].label

count + sum([twins(b) for b in t.branches])

3

4

5 6

4

5 5

3

4

5 6

4

5 5

3

4

5 6

4

5 5

8

1

1

2

2

2

label: 1
branches:

t:

Spring 2023 Midterm 2 Question 4(b)

You have already implemented exclude(t, x), which takes a Tree instance t and a value x. It
returns a Tree containing the root node of t as well as each non-root node of t with a
label not equal to x. The parent of a node in the result is its nearest ancestor node that
is not excluded. The input t is not modified.

Implement remove, which takes a Tree instance t and a value x. It removes all non-root
nodes from t that have a label equal to x, then returns t. The parent of a node in t is its
nearest ancestor that is not removed.

7

def remove(t, x):
 """Remove all non-root nodes labeled x from t.

 >>> t = Tree(1, [Tree(2, [Tree(2), Tree(3)]), Tree(4)])
 >>> remove(t, 2)
 Tree(1, [Tree(3), Tree(4)])
 >>> remove(t, 3)
 Tree(1, [Tree(4)])
 """

 return t

t.branches = exclude(t, x).branches

label: 2
branches:

label: 4
branches:

empty list

label: 2
branches:

label: 3
branches:

empty listempty list

label: 1
branches:

label: 3
branches:

label: 4
branches:

empty listempty list

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

9

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

11

(Demo)

Memoized Tree Recursion

12

Call to fib

Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Orders of Growth

Common Orders of Growth

14

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

Spring 2023 Midterm 2 Question 3(a) Part (iii)

Definition. A prefix sum of a sequence of numbers is the sum of the first n elements for
some positive length n.

(1 pt) What is the order of growth of the time to run prefix(s) in terms of the length of
s? Assume append takes one step (constant time) for any arguments.

def prefix(s):
 "Return a list of all prefix sums of list s."
 t = 0
 result = []
 for x in s:
 t = t + x
 result.append(t)
 return result

15

