Efficiency

Announcements

Tree Class

Tree Class

```
A Tree has a label and a list of branches; each branch is a Tree
class Tree:
    def __init__(self, label, branches=[]):
        self.label = label
        for branch in branches:
            assert isinstance(branch, Tree)
            self.branches = list(branches)
def fib_tree(n):
    if n == 0 or n == 1:
        return Tree(n)
    else:
        left = fib_tree(n-2)
        right = fib_tree(n-1)
        fib_n = left.label + right.label
        retürn Tree(fib_n, [left, right])
```

```
def tree(label, branches=[]):
```

def tree(label, branches=[]):
for branch in branches:
for branch in branches:
assert is_tree(branch)
assert is_tree(branch)
return [label] + list(branches)
return [label] + list(branches)
def label(tree):
def label(tree):
return tree[0]
return tree[0]
def branches(tree):
def branches(tree):
return tree[1:]
return tree[1:]
def fib_tree(n):
def fib_tree(n):
if n == 0 or n == 1:
if n == 0 or n == 1:
return tree(n)
return tree(n)
else:
else:
left = fib_tree(n-2)
left = fib_tree(n-2)
right = fib_tree(n-1)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])

```
            return tree(fib_n, [left, right])
```

Tree Practice

Example: Count Twins

Implement twins, which takes a Tree t. It return the number of pairs of sibling nodes whose labels are equal.

```
def twins(t):
    """"Count the pairs of sibling nodes with equal labels.
    >>> t1 = Tree(3, [Tree(4, [Tree(5), Tree(6)]), Tree(4, [Tree(5), Tree(5)])])
    >>> twins(t1) # 4 and 5
    2
    >>> twins(Tree(1, [Tree(1, [Tree(2)]), Tree(2, [Tree(2)])]))
2
0
>>> twins(Tree(8, [t1, t1, t1])) # 3 pairs of twins at the top, plus 2 in each branch
9
"""
    count = 0
    n = len(t.branches)
    for i in range(n-1):
        for j in range(i+1, n):
```



```
            if t.branches[i].label == t.branches[j].label:
                        count += 1
    return count + sum([twins(b) for b in t.branches])
```


Spring 2023 Midterm 2 Question 4(b)

You have already implemented exclude(t, \mathbf{x}), which takes a Tree instance t and a value x. It returns a Tree containing the root node of t as well as each non-root node of t with a label not equal to x. The parent of a node in the result is its nearest ancestor node that is not excluded. The input t is not modified.

Implement remove, which takes a Tree instance t and a value x. It removes all non-root nodes from t that have a label equal to x, then returns t. The parent of a node in t is its nearest ancestor that is not removed.

```
def remove(t, x):
    """"Remove all non-root nodes labeled x from t.
```

 >>> t = Tree(1, [Tree(2, [Tree(2), Tree(3)]), Tree(4)])
 >>> remove(t, 2)
 Tree(1, [Tree(3), Tree(4)])
 >>> remove(t, 3)
 Tree(1, [Tree(4)])
 "'"
 t.branches = exclude(t, x).branches
 return t
 label: 2
 branches:
empty list

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

Memoization

Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
                                Keys are arguments that
                                map to return values
    def memoized(n):
            if n not in cache:
            cache[n] = f(n)
            return cache[n]
    return memoized
        Same behavior as f,
```

(Demo)

Memoized Tree Recursion

Orders of Growth

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth

Incrementing n increases time by n times a constant

Linear growth.

Incrementing n increases time by a constant

Logarithmic growth.
Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Spring 2023 Midterm 2 Question 3(a) Part (iii)

Definition. A prefix sum of a sequence of numbers is the sum of the first n elements for some positive length n.
(1 pt) What is the order of growth of the time to run prefix(s) in terms of the length of s? Assume append takes one step (constant time) for any arguments.
def prefix(s):
"Return a list of all prefix sums of list s."
$\mathrm{t}=0$
result = []
for x in s :
$\mathrm{t}=\mathrm{t}+\mathrm{x}$
result.append(t)
return result

