A sequence is an ordered collection of values. It has two fundamental properties: length and element selection. In this discussion, we’ll explore one of Python’s data types, the list, which implements this abstraction.

In Python, we can have lists of whatever values we want, be it numbers, strings, functions, or even other lists! Furthermore, the types of the list’s contents need not be the same. In other words, the list need not be homogenous.

Lists can be created using square braces. Their elements can be accessed (or indexed) with square braces. Lists are zero-indexed: to access the first element, we must index at 0; to access the i^{th} element, we must index at $i - 1$.

We can also index with negative numbers. These begin indexing at the end of the list, so the index -1 is equivalent to the index $\text{len}(\text{list}) - 1$ and index -2 is the same as $\text{len}(\text{list}) - 2$.

Let’s try out some indexing:

```python
>>> fantasy_team = ['aaron rodgers', 'desean jackson']
>>> print(fantasy_team)
['aaron rodgers', 'desean jackson']
>>> fantasy_team[0]
'aaron rodgers'
>>> fantasy_team[\text{len}(\text{fantasy_team}) - 1]
'desean jackson'
>>> fantasy_team[-1]
'desean jackson'
```
If we have two lists, we can use the + operator to create a new list with the values of the original two lists, concatenated together.

```python
>>> fish_names = ['Dory', 'Flounder']
>>> rabbit_names = ['Bugs Bunny', 'Officer Hopps']
>>> animal_names = fish_names + rabbit_names
>>> animal_names
['Dory', 'Flounder', 'Bugs Bunny', 'Officer Hopps']
```

Sequences also have a notion of length, the number of items stored in the sequence. In Python, we can check how long a sequence is with the `len` built-in function.

We can also check if an item exists within a list with the `in` statement.

```python
>>> poke_team = ['Meowth', 'Mewtwo']
>>> len(poke_team)
2
>>> 'Meowth' in poke_team
True
>>> 'Pikachu' in poke_team
False
```

1. What would Python print?
   ```python
   >>> a = [1, 5, 4, [2, 3], 3]
   >>> print(a[0], a[-1])
   Solution:
   1 3
   >>> len(a)
   Solution: 5
   >>> 2 in a
   Solution: False
   >>> 4 in a
   Solution: True
   >>> a[3][0]
   ```
Solution: 2
1.1 Slicing

If we want to access more than one element of a list at a time, we can use a slice. Slicing a sequence is very similar to indexing. We specify a starting index and an ending index, separated by a colon. Python creates a new list with the elements from the starting index up to (but not including) the ending index.

We can also specify a step size, which tells Python how to collect values for us. For example, if we set step size to 2, the returned list will include every other value, from the starting index until the ending index. A negative step size indicates that we are stepping backwards through a list when collecting values.

If the step size is left out, the default step size is 1. If either the start or end indices are left out, the slice starts at the beginning and ends at the end of the list. When the step size is negative, the slice starts at the end and ends at the beginning of the list.

Thus, lst[:] creates a list that is identical to lst (a copy of lst). lst[::−1] creates a list that has the same elements of lst, but reversed. Those rules still apply if more than just the step size is specified e.g. lst[3::−1].

>>> directors = ['jenkins', 'spielberg', 'bigelow', 'kubrick']
>>> directors[:2]
['jenkins', 'spielberg']
>>> directors[1:3]
['spielberg', 'bigelow']
>>> directors[1:]
['spielberg', 'bigelow', 'kubrick']
>>> directors[0:4:2]
['jenkins', 'bigelow']
>>> directors[::-1]
['kubrick', 'bigelow', 'spielberg', 'jenkins']

1. What would Python print?
 >>> a = [3, 1, 4, 2, 5, 3]
 >>> a[1::2]
 Solution: [1, 2, 3]
 >>> a[:]
 Solution: [3, 1, 4, 2, 5, 3]
 >>> a[4:2]

Solution: []

```python
>>> a[1:-2]
```

Solution: [1, 4, 2]

```python
>>> a[::-1]
```

Solution: [3, 5, 2, 4, 1, 3]
2 List Comprehensions

A list comprehension is a compact way to create a list whose elements are the results of applying a fixed expression to elements in another sequence.

\[
\begin{align*}
&[\text{map exp} \text{ for } \text{name} \text{ in } \text{iter exp} \text{ if } \text{filter exp}] \\
\end{align*}
\]

Let’s break down an example:

\[
[x \times x - 3 \text{ for } x \text{ in } [1, 2, 3, 4, 5] \text{ if } x \% 2 == 1]
\]

In this list comprehension, we are creating a new list after performing a series of operations to our initial sequence \([1, 2, 3, 4, 5]\). We only keep the elements that satisfy the filter expression \(x \% 2 == 1\) (1, 3, and 5). For each retained element, we apply the map expression \(x \times x - 3\) before adding it to the new list that we are creating, resulting in the output \([-2, 6, 22]\).

Note: The if clause in a list comprehension is optional.

1. What would Python print?

```python
>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]
```

Solution:

```
[3, 5]
```

```python
>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]
```

Solution:

```
[20, 6, 6]
```

```python
>>> [[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]
```

Solution:

```
[[2, 4], [4, 6], [6, 8], [8, 10]]
```
In computer science, trees are recursive data structures that are widely used in various settings. This is a diagram of a simple tree.

Notice that the tree branches downward. In computer science, the root of a tree starts at the top, and the leaves are at the bottom.

Some terminology regarding trees:

- **Parent node**: A node that has branches. Parent nodes can have multiple branches.
- **Branch node**: A node that has a parent. A branch node can only belong to one parent.
- **Root**: The top node of the tree. In our example, the node that contains 7 is the root.
- **Label**: The value at a node. In our example, all of the integers are labels.
- **Leaf**: A node that has no branches. In our example, the nodes that contain −4, 0, 6, 17, and 20 are leaves.
- **Subtree**: Notice that each branch of a parent is itself the root of a smaller tree. In our example, the node containing 1 is the root of another tree. This is why trees are recursive data structures: trees are made up of subtrees, which are trees themselves.
- **Depth**: How far away a node is from the root. In other words, the number of edges between the root of the tree to the node. In the diagram, the node containing 19 has depth 1; the node containing 3 has depth 2. Since there are no edges between the root of the tree and itself, the depth of the root is 0.
- **Height**: The depth of the lowest leaf. In the diagram, the nodes containing −4, 0, 6, and 17 are all the “lowest leaves,” and they have depth 4. Thus, the entire tree has height 4.

In computer science, there are many different types of trees. Some vary in the number of branches each node has; others vary in the structure of the tree.
A tree has both a label for the root node and a sequence of children, which are also trees. In our implementation, we represent the branches as lists of subtrees. Since a tree is an abstract data type, our choice to use lists is simply an implementation detail.

- The arguments to the constructor, `tree`, as a label for the root node and a list of branches.
- The selectors are `label` and `branches`.

```python
# Constructor
def tree(label, branches=[]):
    return [label] + list(branches)

# Selectors
def label(tree):
    return tree[0]

def branches(tree):
    return tree[1:]
```

Note that `branches` returns a list of subtrees and not a tree directly. Although trees are represented as lists in this implementation, it is important to recognize when working with a tree or a list of trees.

We have also provided a convenience function, `is_leaf`:

```python
def is_leaf(tree):
    return not branches(tree)
```

It’s simple to construct a tree. Let’s try to create the following tree:

```
t = tree(1,
    [tree(3,
        [tree(4),
        tree(5),
        tree(6)]),
    tree(2))
```
3.1 Questions

1. Define a function `square_tree(t)` that squares every label in the tree `t`. It should return a new tree. You can assume that every item is a number.

```python
def square_tree(t):
    """Return a tree with the square of every element in t""
    sq_branches = [square_tree(subtree) for subtree in branches(t)]
    return tree(label(t)**2, sq_branches)
```

2. Define a function `height(t)` that returns the height of a tree. Recall that the height of a tree is the length of the longest path from the root to a leaf.

```python
def height(t):
    """Return the height of a tree""
    if is_leaf(t):
        return 0
    return 1 + max([height(subtree) for subtree in branches(t)])
```

3. Define a function `tree_max(t)` that returns the largest number in a tree.

```python
def tree_max(t):
    """Return the max of a tree.""
    return max([label(t)] + [tree_max(subtree) for subtree in branches(t)])
```
3.2 Extra Questions!

1. Define the procedure `find_path(tree, x)` that, given a tree `tree` and a value `x`, returns a list containing the nodes along the path required to get from the root of `tree` to a node `x`. If `x` is not present in `tree`, return `None`. Assume that the entries of `tree` are unique.

 For the following tree, `find_path(t, 5)` should return `[2, 7, 6, 5]`

```
\[ DEF  \]
\[ find\_path(tree, x):  \]
\[ ""
\[ >>> find\_path(t, 5)  
\[ [2, 7, 6, 5]  
\[ >>> find\_path(t, 10) # returns None  
\[ ""
\]
```

Solution:

```
if label(tree) == x:
    return [label(tree)]
node, trees = label(tree), branches(tree)
for path in [find_path(t, x) for t in trees]:
    if path:
        return [node] + path
```

2. Implement a prune function which takes in a tree `t` and a depth `k`, and should return a new tree that is a copy of only the first `k` levels of `t`. For example, if `t` is the tree shown in the previous question, then `prune(t, 2)` should return the tree

```
\[ DEF  \]
\[ prune(t, k):  \]
```
Solution:

```python
if k == 0:
    return tree(label(t), [])
else:
    return tree(label(t), [prune(subtree, k - 1) for subtree in branches(t)])
```
3. We can represent the hailstone sequence as a tree in the figure below, showing the route different numbers take to reach 1. Remember that a hailstone sequence starts with a number \(n \), continuing to \(n/2 \) if \(n \) is even or \(3n + 1 \) if \(n \) is odd, ending with 1. Write a function `hailstone_tree(n, h)` which generates a tree of height \(h \), containing hailstone numbers that will reach \(n \).

Hint: A node of a hailstone tree will always have at least one, and at most two branches (which are also hailstone trees). Under what conditions do you add the second branch?

```
1 — 2 — 4 — 8 — 16
    |    |
    32 64 128
    21
    5 — 10 — 20
    3
```

```python
def hailstone_tree(n, h):
    """Generates a tree of hailstone numbers that will reach N, with height H.
    >>> hailstone_tree(1, 0)
    [1]
    >>> hailstone_tree(1, 4)
    [1, [2, [4, [8, [16]]]]]
    >>> hailstone_tree(8, 3)
    [8, [16, [32, [64]], [5, [10]]]]
    ""
```

Solution:
```
if h == 0:
    return tree(n)
branches = [hailstone_tree(n * 2, h - 1)]
if ((n - 1) // 3) % 2 == 1 and (n - 1) // 3 > 1:
    branches += [hailstone_tree((n - 1) // 3, h - 1)]
return tree(n, branches)
```