
CS 61A Structure and Interpretation of Computer Programs
Spring 2024 Midterm 2

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (7.0 points) What Would Python Display?

Assume the following code has been executed. The Link class appears on the midterm 2 study guide (page 2,
left side).

def shake(it):
if it is not Link.empty and it.rest is not Link.empty:

if it.first + 1 < it.rest.first:
it.rest = Link(it.rest.first-1, it.rest)
shake(it)

else:
shake(it.rest)

it = Link(2, Link(5, Link(7)))
off = Link(1, it.rest)
shake(it)

def cruel(summer):
while summer is not Link.empty:

yield summer.first
summer = summer.rest
if summer is not Link.empty:

summer = summer.rest
summer = Link(1, Link(2, Link(3, Link(4))))

Write the output printed for each expression below or Error if an error occurs.

(a) (2.0 pt) print(it)

<2 5 7>

<2 4 5 7>

<2 4 5 6 7>

<2 3 4 5 7>

<2 4 3 5 7>

<2 3 4 5 6 7>

<2 4 3 5 6 7>

(b) (2.0 pt) print(off)

(c) (2.0 pt) print([x*x for x in cruel(summer)])

Exam generated for <EMAILADDRESS> 4

(d) (1.0 pt) What is the order of growth of the time it takes to evaluate shake(Link(1, Link(n))) in terms
of n?

exponential

quadratic

linear

constant

Exam generated for <EMAILADDRESS> 5

2. (6.0 points) Spin Cycle

Complete the environment diagram below and then answer the questions that follow. Do not add frames for
calls to built-in functions (such as print).

(a) (2.0 pt) What would be printed by the expression print(a) on line 8?

(b) (2.0 pt) What would be printed by the expression print(b) on line 9?

(c) (2.0 pt) What would be printed by the expression print(c) on line 13?

Exam generated for <EMAILADDRESS> 6

3. (8.0 points) Fearless

If you sing lyrics into a mic, every connected speaker repeats them.

A Mic instance has a dictionary speakers containing Speaker instances as values, each with its location (str)
as its key. Its sing method takes a string lyrics and invokes the repeat method of each Speaker instance
connected to it.

A Speaker takes a transform function that takes and returns a string. To connect a Speaker instance to m
(Mic) in a location (str), add that instance to the speakers dictionary of m in that location. To repeat a
signal s (str), return the result of calling the speaker’s transform function on s.

Every Mic starts connected to a Speaker in the Front location that repeats the exact same signal it receives.

Implement the Mic and Speaker classes to match the doctests. The str.lower and str.upper functions return
lowercased and uppercased versions of a string, respectively.

class Mic:
"""A microphone connected to speakers.

>>> m = Mic() # Front is connected automatically
>>> m.sing('Is this thing on?')
Front - Is this thing on?
>>> Speaker(str.lower).connect(m, 'Left Side')
>>> Speaker(str.upper).connect(m, 'Right Side')
>>> m.sing("You belong with me.")
Front - You belong with me.
Left Side - you belong with me.
Right Side - YOU BELONG WITH ME.
"""
def __init__(self):

self.speakers = _______
(a)

def sing(self, lyrics):
for k in self.speakers.keys(): # iterate over the keys of a dictionary

print(k, '-', _______.repeat(lyrics))
(b)

class Speaker:
def __init__(self, transform):

self.transform = transform

def connect(self, m, location):

(c)

def repeat(self, s):
return _______

(d)

(a) (3.0 pt)

Exam generated for <EMAILADDRESS> 7

(b) (2.0 pt)

self

self.speaker

self.speakers

self.speakers[k]

self.speakers[k].self

speaker

speakers

speakers[k]

speakers[k].self

(c) (2.0 pt)

(d) (1.0 pt)

s

lyrics

transform

transform(s)

transform(lyrics)

self.transform

self.transform(s)

self.transform(lyrics)

Exam generated for <EMAILADDRESS> 8

4. (29.0 points) Who’s counting?

Definition. A strip is a list of integers in which each integer is one more than the last. For example, [3, 4,
5, 6] is a strip. Empty and one-element lists are strips.

(a) (4.0 points)

Implement is_strip, which takes a list of integers s and returns whether it is a strip.

def is_strip(s):
"""Return whether list s is a strip.

>>> is_strip([3, 4, 5, 6])
True
>>> is_strip([3, 3, 3]) # 3 after 3
False
>>> is_strip([3, 4, 5, 4, 6]) # 4 after 5
False
>>> is_strip([3, 4, 5, 5, 6]) # 5 after 5
False
>>> is_strip([3, 4, 5, 6, 8]) # 8 after 6
False
>>> is_strip([5])
True
>>> is_strip([])
True
"""
assert type(s) == list
return _______ or s == list (range (_______ , _______))

(a) (b) (c)

i. (1.0 pt) Fill in blank (a).

len(s) == 0

s[0] + 1 == s[1]

s[0] + 1 in s

s[0] + 1 in s[1:]

ii. (1.0 pt) Fill in blank (b).

iii. (2.0 pt) Fill in blank (c).

s

s[0]

s[1]

s[0] + 1

s[0] + len(s)

s[len(s) - 1]

s[1] - s[0]

Exam generated for <EMAILADDRESS> 9

(b) (7.0 points)

Implement drip, which takes two non-empty lists of integers s and t. It returns True if there is a strip
containing all and only the elements of s and t starting with s[0] in which the elements of s appear in
order and the elements of t appear in order. It returns False otherwise.

def drip(s, t):
"""Return whether there is a strip made out of interleaving s and t.

>>> drip([1, 3, 5], [2, 4, 6]) # 1 2 3 4 5 6
True
>>> drip([1, 4, 5], [2, 3, 6]) # 1 2 3 4 5 6
True
>>> drip([1, 2, 3], [4, 5, 6]) # 1 2 3 4 5 6
True
>>> drip([2, 4, 5], [1, 3, 6]) # No strip starting with 2 can contain 1
False
>>> drip([1, 2, 4, 5], [1, 3, 6]) # No strip can contain 1 and 1
False
>>> drip([1, 4, 5], [2, 3, 7]) # No strip can contain 5 and 7 but no 6
False
>>> drip([1, 5, 4], [2, 3, 6]) # No strip can contain 5 before 4
False
>>> drip([2], [3, 4, 5]) # 2 3 4 5
True
>>> drip([1], [2, 3, 5]) # No strip can contain 3 and 5 but no 4
False
"""
while s and t:

if s[0] + 1 == t[0]:
s, t = _______ # The next element of the strip is in t

(a)
elif _______:

(b)
s = s[1:] # The next element of the strip is in s

else:
return _______

(c)
return _______

(d)

i. (1.0 pt) Fill in blank (a).

t, s

t, s[1:]

t[1:], s

ii. (3.0 pt) Fill in blank (b).

Exam generated for <EMAILADDRESS> 10

iii. (1.0 pt) Fill in blank (c).

False

s[0] != t[0]

is_strip(s) or is_strip(t)

not (is_strip(s) or is_strip(t))

is_strip(s) and is_strip(t)

not (is_strip(s) and is_strip(t))

iv. (2.0 pt) Fill in blank (d).

True

is_strip(s)

is_strip(t)

is_strip(s) or is_strip(t)

not (is_strip(s) or is_strip(t))

is_strip(s) and is_strip(t)

not (is_strip(s) and is_strip(t))

Exam generated for <EMAILADDRESS> 11

(c) (6.0 points)

Implement longest, which takes a list of integers s. It returns the longest strip whose elements appear in
s in order. If two such strips exist, return the one that starts earlier in s. Hint: s[-1] is the last element
in list s.

def longest(s):
"""Return the longest strip whose elements appear in s in order.
>>> longest([4, 2, 3, 5, 6, 4, 6, 5]) # 2 3 4 5 is the longest strip in s
[2, 3, 4, 5]
>>> longest([4, 2, 3, 5, 6, 4]) # 4 5 6 is as long as 2 3 4 and is earlier
[4, 5, 6]
>>> longest([2, 4, 6])
[2]
"""
if len(s) == 0:

return []
return max([longest_with_s0(s), _______], key= _______)

(a) (b)
def longest_with_s0(s):

"""Return the longest strip in s that starts with s[0]."""
result = _______

(c)
for k in s[1:]:

if _______:
(d)

result.append(k)
return result

i. (2.0 pt) Fill in blank (a).

ii. (1.0 pt) Fill in blank (b).

len

len(s)

s[0]

lambda i: s[i]

iii. (1.0 pt) Fill in blank (c).

[]

[s]

s[0]

s[:1]

iv. (2.0 pt) Fill in blank (d).

Exam generated for <EMAILADDRESS> 12

(d) (5.0 points)

Implement has_strip, which takes a Tree of integers t. It returns whether there is a strip containing the
labels along some path from the root to a leaf of t. The Tree class is on the midterm 2 study guide (page
2 left side).

def has_strip(t):
"""Return whether the elements of some root-to-leaf path form a strip.

>>> has_strip(Tree(1, [Tree(3, [Tree(4)]), Tree(2, [Tree(2), Tree(3)])])) # 1, 2, 3
True
>>> has_strip(Tree(1, [Tree(3, [Tree(4)]), Tree(2, [Tree(2, [Tree(3)])])]))
False
>>> has_strip(Tree(1, [Tree(3, [Tree(4)]), Tree(2, [Tree(2)])]))
False
>>> has_strip(Tree(1, [Tree(2, [Tree(4)]), Tree(3, [Tree(3)])]))
False
"""
if t.is_leaf():

return _______
(a)

for b in t.branches:
if _______

(b)
return True

return _______
(c)

i. (1.0 pt) Fill in blank (a).

True

False

t

t.label

t.label == t + 1

t + 1 == t.label

ii. (3.0 pt) Fill in blank (b).

iii. (1.0 pt) Fill in blank (c).

True

False

t

t.label

t.label == t + 1

t + 1 == t.label

Exam generated for <EMAILADDRESS> 13

(e) (7.0 points)

Implement strips, a generator function that takes a Tree of integers t. It yields all strips that contain
the labels along a path from the root to a leaf of t.

def strips(t):
"""Yield the paths from the root to a leaf of Tree t that form strips.

>>> list(strips(Tree(1, [Tree(3, [Tree(4)]), Tree(2, [Tree(2), Tree(3)])])))
[[1, 2, 3]]
>>> list(strips(Tree(1, [Tree(2), Tree(2, [Tree(2), Tree(3, [Tree(4)]), Tree(3)])])))
[[1, 2], [1, 2, 3, 4], [1, 2, 3]]
"""
if t.is_leaf():

yield _______
(a)

for b in t.branches:
if _______:

(b)

for s in _______:
(c)

yield _______
(d)

i. (2.0 pt) Fill in blank (a).

None

t

t.label

[t]

[t.label]

ii. (1.0 pt) Fill in blank (b).

t.label == b.label + 1

b.label == t.label + 1

t.label == b.label + 1 and is_strip(b)

b.label == t.label + 1 and is_strip(b)

iii. (2.0 pt) Fill in blank (c).

strips(t)

strips(b)

t.branches

b.branches

range(len(t.branches))

range(len(b.branches))

Exam generated for <EMAILADDRESS> 14

iv. (2.0 pt) Fill in blank (d).

s

t

t + s

t.label + s

[t] + s

[t.label] + s

[t] + [s]

[t.label] + [s]

v. (0.0 pt) This A+ question is not worth any points. It can only affect your course grade
if you have a high A and might receive an A+. Finish the rest of the exam first!

Fill in the blank of only_strips, which takes a Tree of integers t. It removes all nodes that are not
on a strip path. A strip path is a path from the root to a leaf whose labels form a strip. You may use
functions implemented earlier in this question.

def test_only_strips(t):
"""Call only_strips(t) and then return t. Assume has_strip(t) is True.

>>> test_only_strips(Tree(1, [Tree(2), Tree(2, [Tree(2), Tree(3, [Tree(4)]), Tree(3)])]))
Tree(1, [Tree(2), Tree(2, [Tree(3, [Tree(4)]), Tree(3)])])
>>> test_only_strips(Tree(5, [Tree(6), Tree(6, [Tree(7, [Tree(9)])]), Tree(7)]))
Tree(5, [Tree(6)])
"""
only_strips(t)
return t

def only_strips(t):
"""Remove all nodes of Tree t that are not on a path from the root to a leaf
whose labels form a strip. Assume has_strip(t) is True.
"""
t.branches = [b for b in t.branches if _______]

Exam generated for <EMAILADDRESS> 15

No more questions.

