Instructions

Form a small group. Start on the first problem. Check off with a helper or
discuss your solution process with another group once everyone understands
how to solve the first problem and then repeat for the second problem . . .

You may not move to the next problem until you check off or discuss with
another group and everyone understands why the solution is what it is. You
may use any course resources at your disposal: the purpose of this review
session is to have everyone learning together as a group.

0.1 What would Python display?

```python
>>> pikachu, charmander = 'electric', 'fire'
>>> ash = [[pikachu], [charmander], [[pikachu]]]
>>> pikachu, charmander = 2, 0
>>> ash[pikachu] = [ash, ash[pikachu][charmander]]
>>> ash

[['electric'], ['fire'], [[...], ['electric']]]
```

1 Lists & Tree Recursion

Mutative (destructive) operations change the state of a list by adding, re-
moving, or otherwise modifying the list itself.

- lst.append(element)
- lst.extend(lst)
- lst.pop(index)
- lst += lst (not lst = lst + lst)
- lst[i] = x
- lst[i:j] = lst
Non-mutative (non-destructive) operations include the following.

- \texttt{lst + lst}
- \texttt{lst * n}
- \texttt{lst[i:j]}
- \texttt{list(lst)}

\textit{Recall:} To execute assignment statements,

- Evaluate all expressions to the right of the = sign
- Bind all names to the left of the = to those resulting values

The \textbf{Golden Rule of Equals} describes how this rule behaves with composite values. \textit{Composite values}, such as functions and lists, are connected by a pointer. When an expression evaluates to a composite value, we are returned the pointer to that value, rather than the value itself.

In an environment diagram, we can summarize this rule with,

\textit{Copy exactly} what is in the box!

1.1 Write a list comprehension that accomplishes each of the following tasks.

(a) Square all the elements of a given list, \texttt{lst}.

\[
[x \times 2 \text{ for } x \text{ in } \texttt{lst}]
\]

(b) Compute the dot product of two lists \texttt{lst1} and \texttt{lst2}. \textit{Hint:} The dot product is defined as \texttt{lst1[0] \cdot lst2[0] + lst1[1] \cdot lst2[1] + \ldots + lst1[n] \cdot lst2[n]}. The Python \texttt{zip} function may be useful here.

\[
\text{sum([x * y \text{ for } x, y \text{ in } \texttt{zip(lst1, lst2)}])}
\]

(c) \texttt{[[0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]}

\[
[[x \text{ for } x \text{ in } \texttt{range(y)}] \text{ for } y \text{ in } \texttt{range(1, 6)}]
\]

(d) Return the same list as above, except now excluding every instance of the number 2: \texttt{[[0], [0, 1], [0, 1], [0, 1, 3], [0, 1, 3, 4]]}.

\[
[[x \text{ for } x \text{ in } \texttt{range(y)} \text{ if } x \neq 2] \text{ for } y \text{ in } \texttt{range(1, 6)}]
\]
1.2 Draw the environment diagram that results from running the following code.

```python
pom = [16, 15, 13]
pompom = pom * 2
pompom.append(pom[:])
pom.extend(pompom)

https://goo.gl/ZU1V7h
```

1.3 Draw the environment diagram that results from running the following code.

```python
bless, up = 3, 5
another = [1, 2, 3, 4]
one = another[1:]

another[bless] = up
another.append(one.remove(2))
another[another[0]] = one
one[another[0]] = another[1]
one = one + [another.pop(3)]
another[1] = one[1][1][0]
one.append([one.pop(1)])

https://goo.gl/FyMmbJ
```

1.4
```python
def jerry(jerry):
    def jerome(alex):
        alex.append(jerry[1:])
    return alex

return jerome

ben = ['nice', ['ice']]  
jerome = jerry(ben)  
alex = jerome(['cream'])  
ben[1].append(alex)  
ben[1][1][1] = ben  
print(ben)

https://goo.gl/uhSClr
```
1.5 Implement `subset_sum`, which takes in a list of integers and a number \(k \) and returns whether there is a subset of the list that adds up to \(k \)? *Hint:* The `in` operator can determine if an element belongs to a list.

```python
def subset_sum(seq, k):
    """
    >>> subset_sum([2, 4, 7, 3], 5)  # 2 + 3 = 5
    True
    >>> subset_sum([1, 9, 5, 7, 3], 2)
    False
    """

    if len(seq) == 0:
        return False
    elif k in seq:
        return True
    else:
        return subset_sum(seq[1:], k - seq[0]) or subset_sum(seq[1:], k)
```

2. Trees

```python
def tree(label, branches=[]):
    return [label] + list(branches)

def label(tree):
    return tree[0]

def branches(tree):
    return tree[1:]
```
2.1 A **min-heap** is a tree with the special property that every node’s value is less than or equal to the values of all of its branches.

![Min-Heap Example](image)

Implement `is_min_heap` which takes in a tree data abstraction and returns whether the tree satisfies the min-heap property or not.

```python
def is_min_heap(t):
    for b in branches(t):
        if label(t) > label(b) or not is_min_heap(b):
            return False
    return True
```

3 Growth

3.1 Give a tight asymptotic runtime bound for the following functions in $\Theta(\cdot)$ notation, or “Infinite” if the program does not terminate.

(a) `def one(n):`
    ```python
    while n > 0:
        n = n // 2
    ```
 $\Theta(\log n)$

(b) `def two(n):`
    ```python
    for i in range(n):
        for j in range(i):
            print(str(i), str(j))
    ```
 $\Theta(n^2)$

(c) `def three(n):`
    ```python
    i = 1
    while i <= n:
        for j in range(i):
            print(j)
        i *= 2
    ```
 $\Theta(n)$
4 Nonlocals & OOP

4.1 Draw the environment diagram that results from running the code.

```python
def campa(nile):
    def ding(ding):
        nonlocal nile
        def nile(ring):
            return ding
        return nile(ding(1914)) + nile(1917)

ring = campa(lambda nile: 103)
```

https://goo.gl/G1Kmbw
Implement the classes so that the code to the right runs.

```python
class Plant:
    def __init__(self):
        self.leaf = Leaf(self)
        self.materials = []
        self.height = 1

    def absorb(self):
        self.leaf.absorb()

    def grow(self):
        for sugar in self.materials:
            sugar.activate()
        self.height += 1

class Leaf:
    def __init__(self, plant):
        self.alive = True
        self.sugars_used = 0
        self.plant = plant

    def absorb(self):
        if self.alive:
            self.plant.materials.append(Sugar(self, self.plant))

    def __repr__(self):
        return 'Leaf'

class Sugar:
    sugars_created = 0

    def __init__(self, leaf, plant):
        self.leaf = leaf
        self.plant = plant
        Sugar.sugars_created += 1

    def activate(self):
        self.leaf.sugars_used += 1
        self.plant.materials.remove(self)

    def __repr__(self):
        return 'Sugar'

>>> p = Plant()
>>> p.height
1
>>> p.absorb()
>>> p.materials
[]
>>> p.grow()
>>> p.materials
[Sugar]
>>> Sugar.sugars_created
1
>>> p.leaf.sugars_used
0
>>> p.grow()
>>> p.materials
[]
>>> p.height
2
>>> p.leaf.sugars_used
1
```
5.1 Implement `slice_reverse` which takes a linked list `s` and mutatively reverses the elements on the interval, `[i, j)` (including `i` but excluding `j`). Assume `s` is zero-indexed, `i > 0, i < j`, and that `s` has at least `j` elements.

```python
def slice_reverse(s, i, j):
    """
    >>> s = Link(1, Link(2, Link(3)))
    >>> slice_reverse(s, 1, 2)
    >>> s
    Link(1, Link(2, Link(3)))
    >>> s = Link(1, Link(2, Link(3, Link(4, Link(5)))))
    >>> slice_reverse(s, 2, 4)
    >>> s
    Link(1, Link(2, Link(4, Link(3, Link(5)))))
    """
    start = s
    for _ in range(i - 1):
        start = start.rest

    reverse = Link.empty

    current = start.rest
    for _ in range(j - i):
        rest = current.rest

        current.rest = reverse

        reverse = current

        current = rest

    start.rest.rest = current

    start.rest = reverse
```
5.2 A **Binary Search Tree** is a tree where each node contains either 0, 1, or 2 nodes and where the left branch (if present) contains values strictly less than (<) the root value, and the right branch (if present) contains values strictly greater than (>) the root value. The definition is recursive: both the left and right branches must also be BSTs for the entire tree to be a BST.

Implement `is_binary` which takes in a Tree `t`, and returns `True` if `t` is a Binary Search Tree and `False` otherwise. Trees can contain any number of branches, but if a tree contains only one branch, interpret it as a left branch.

```python
def is_binary(t):
    def binary(t, lo, hi):
        if lo < t.label < hi:
            if t.is_leaf():
                return True
            elif len(t.branches) == 1 and t.branches[0].label < t.label:
                return binary(t.branches[0], lo, t.label)
            elif len(t.branches) == 2 and t.branches[0].label < t.label < t.branches[1].label:
                return binary(t.branches[0], lo, t.label) and binary(t.branches[1], t.label, hi)
            return False
            return binary(t, float('-inf'), float('inf'))
```

5.3 Give a tight asymptotic runtime bound for the following scenarios in \(\Theta(\cdot) \) notation, or “Infinite” if the program does not terminate. Assume the implementation of `is_binary` is optimal.

(a) `is_binary` on a well-formed binary search tree with \(n \) nodes.
\[\Theta(n) \]

(b) `is_binary` on a tree where each node contains 3 branches and the overall height of the tree is \(n \).
\[\Theta(1) \]