Instructions

Form a small group. Start on problem 1.1. Check off with a staff member or discuss your solution process with a nearby group when you think everyone in your group understands how to solve problem 1.1. Then repeat for 1.2, 1.3, ... You may not move to the next problem until you check off or discuss with another group and everyone understands why the solution is what it is. You may use any course resources at your disposal: the purpose of this review session is to have everyone learning together as a group.

1 Functions

1.1 Explain the difference between the following:

(a) >>> def square(x):
 ... return x * x

Defines a function called square.

(b) >>> square(4)

Calls the function, square.

(c) >>> square

Evaluates to the function that squares its input number.

1.2 What would Python display?

(a) (lambda x: x(x))(lambda y: 4)

4

(b) (lambda x, y: y(x))(mul, lambda a: a(3, 5))
1.3 Implement make_alternator.

```python
def make_alternator(f, g):
    """
    >>> a = make_alternator(lambda x: x * x, lambda x: x + 4)
    >>> a(5)
    1
    6
    9
    8
    25
    """

    def alternator(n):
        i = 1
        while i <= n:
            if i % 2 == 1:
                print(f(i))
            else:
                print(g(i))
            i += 1
    return alternator
```

2 Lists & Tree Recursion

Mutative (*destructive*) operations change the state of a list by adding, removing, or otherwise modifying the list itself.

- lst.append(element)
- lst.extend(lst)
- lst.pop(index)
- lst[i] = x
- lst[i:j] = lst

Non-mutative (*non-destructive*) operations include the following.

- lst + lst
- lst * n
- lst[i:j]
- list(lst)
Recall: To execute assignment statements,

- Evaluate all expressions to the right of the = sign
- Bind all names to the left of the = to those resulting values

The **Golden Rule of Equals** describes how this rule behaves with composite values. Composite values, such as functions and lists, are connected by a pointer. When an expression evaluates to a composite value, we are returned the pointer to that value, rather than the value itself.

In an environment diagram, we can summarize this rule with,

Copy exactly what is in the box!

2.1 Write a list comprehension that accomplishes each of the following tasks.

(a) Square all the elements of a given list, lst.

```
[x ** 2 for x in lst]
```

(b) Compute the dot product of two lists lst1 and lst2. *Hint:* The dot product is defined as \(\text{lst1}[0] \cdot \text{lst2}[0] + \text{lst1}[1] \cdot \text{lst2}[1] + \ldots + \text{lst1}[n] \cdot \text{lst2}[n] \). The Python `zip` function may be useful here.

```
sum([x * y for x, y in zip(lst1, lst2)])
```

(c) Return a list of lists such that lol = \([\[0\], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]\).

```
[[x for x in range(y)] for y in range(1, 6)]
```

(d) Return the same list as above, except now excluding every instance of the number 2: lold = \([\[0\], [0, 1], [0, 1], [0, 1, 3], [0, 1, 3, 4]]\).

```
[[x for x in range(y) if x != 2] for y in range(1, 6)]
```

2.2 Draw the environment diagram that results from running the following code.

```python
pom = [16, 15, 13]
pompom = pom * 2
pompom.append(pom[:])
pom.extend(pompom)
```

https://goo.gl/ZU1V7h
2.3 Draw the environment diagram that results from running the following code.

```python
bless, up = 3, 5
another = [1, 2, 3, 4]
one = another[1:]

another[bless] = up
another.append(one.remove(2))
another[another[0]] = one
one[another[0]] = another[1]
one = one + [another.pop(3)]
another[1] = one[1][1][0]
one.append([one.pop(1)])

https://goo.gl/FyMmbJ
```

2.4

```python
def jerry(jerry):
    def jerome(alex):
        alex.append(jerry[1:])
        return alex
    return jerome

ben = ['nice', ['ice']]
jerome = jerry(ben)
alex = jerome(['cream'])
ben[1].append(alex)
ben[1][1][1] = ben
print(ben)

https://goo.gl/uhSC1r
```
Implement `subset_sum`, which takes in a list of integers and a number \(k \) and returns whether there is a subset of the list that adds up to \(k \)? *Hint:* Use the `in` operator to determine if an element belongs to a list.

```python
>>> 3 in [1, 2, 3]
True
>>> 4 in [1, 2, 3]
False
```

```python
def subset_sum(seq, k):
    """
    >>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5
    True
    >>> subset_sum([1, 9, 5, 7, 3], 2)
    False
    """

    if len(seq) == 0:
        return False
    elif k in seq:
        return True
    else:
        return subset_sum(seq[1:], k - seq[0]) or subset_sum(seq[1:], k)
```

2.6 Implement `subsets`, which takes in a list of values and an integer \(n \) and returns all subsets of the list of size exactly \(n \) in any order.

```python
def subsets(lst, n):
    """
    >>> three_subsets = subsets(list(range(5)), 3)
    >>> for subset in sorted(three_subsets):
    ...     print(subset)
    ...             [0, 1, 2]
    ...             [0, 1, 3]
    ...             [0, 1, 4]
    ...             [0, 2, 3]
    ...             [0, 2, 4]
    ...             [0, 3, 4]
    ...             [1, 2, 3]
    ...             [1, 2, 4]
    ...             [1, 3, 4]
    ...             [2, 3, 4]
    """

    if n == 0:
        return [[]]
    if len(lst) == n:
        return [lst]
    with_first = [[lst[0]]] + [x for x in subsets(lst[1:], n - 1)]
    without_first = subsets(lst[1:], n)
    return with_first + without_first
```
3 Recursion on Trees

3.1 A **min-heap** is a tree with the special property that every node’s value is less than or equal to the values of all of its branches.

```
    1
   / \
  5   3  6
 /     / \
7  9   4
```

Implement `is_min_heap` which takes in a tree and returns whether the tree satisfies the min-heap property or not.

```
def is_min_heap(t):
    for b in branches(t):
        if root(t) > root(b) or not is_min_heap(b):
            return False
    return True
```

4 Growth

4.1 Give a tight asymptotic runtime bound for the following functions in $\Theta(\cdot)$ notation, or “Infinite” if the program does not terminate.

(a) `def one(n):
 while n > 0:
 n = n // 2`

$\Theta(\log n)$

(b) `def two(n):
 for i in range(n):
 for j in range(i):
 print(str(i), str(j))`

$\Theta(n^2)$

(c) `def three(n):
 i = 1
 while i <= n:
 for j in range(i):
 print(j)
 i *= 2`

$\Theta(n)$
For each of the questions below, give a $\Theta(\cdot)$ bound on the asymptotic runtime.

4.2 def strange_add(n):
 if n == 0:
 return 1
 else:
 return strange_add(n - 1) + strange_add(n - 1)

$\Theta(2^n)$. To see this, try drawing out the call tree. Each level will create two new calls to `strange_add`, and there are n levels. Therefore, 2^n calls.

4.3 def belgian_waffle(n):
 i = 0
 total = 0
 while i < n:
 for j in range(n ** 2):
 total += 1
 i += 1
 return total

$\Theta(n^3)$. Inner loop runs n^2 times, and the outer loop runs n times. To get the total, multiply those together.

4.4 def flip(n):
 return -n

def pancake(n):
 if n < 1:
 return 1
 return flip(n) + pancake(n - 1) + pancake(n - 1)

$\Theta(2^n)$. `flip` contributes only a constant amount of time to each call so this is just like `strange_add`.

4.5 def toast(n):
 i = 0
 j = 0
 stack = 0
 while i < n:
 stack += pancake(n)
 i += 1
 while j < n:
 stack += 1
 j += 1
 return stack

$O(n \cdot 2^n)$. There are two loops: the first runs n times with each iteration taking $\Theta(2^n)$ time for a total of $\Theta(n \cdot 2^n)$. The second loop runs n times with each iteration taking constant time for a total of $\Theta(n)$. When computing the order of growth, however, we focus on the dominating term – in this case, $\Theta(n \cdot 2^n + n) \in \Theta(n \cdot 2^n)$.