Instructions

Form a small group. Start on problem 1.1. Check off with a staff member or discuss your solution process with a nearby group when you think everyone in your group understands how to solve problem 1.1. Then repeat for 1.2, 1.3, ...

You may not move to the next problem until you check off or discuss with another group and everyone understands why the solution is what it is. You may use any course resources at your disposal: the purpose of this review session is to have everyone learning together as a group.

1 Functions

1.1 Explain the difference between the following:

(a) >>> def square(x):
 ... return x * x

(b) >>> square(4)

(c) >>> square

1.2 What would Python display?

(a) (lambda x: x(x))(lambda y: 4)

(b) (lambda x, y: y(x))(mul, lambda a: a(3, 5))

1.3 Implement make_alternator.

 def make_alternator(f, g):
 ""
 >>> a = make_alternator(lambda x: x * x, lambda x: x + 4)
 >>> a(5)
 1
 6
 9
 8
 25
 ""
2 Lists & Tree Recursion

Mutative (destructive) operations change the state of a list by adding, removing, or otherwise modifying the list itself.

- `lst.append(element)`
- `lst.extend(lst)`
- `lst.pop(index)`
- `lst += lst` (not `lst = lst + lst`)
- `lst[i] = x`
- `lst[i:j] = lst`

Non-mutative (non-destructive) operations include the following.

- `lst + lst`
- `lst * n`
- `lst[i:j]`
- `list(lst)`

Recall: To execute assignment statements,

- Evaluate all expressions to the right of the = sign
- Bind all names to the left of the = to those resulting values

The **Golden Rule of Equals** describes how this rule behaves with composite values. Composite values, such as functions and lists, are connected by a pointer. When an expression evaluates to a composite value, we are returned the pointer to that value, rather than the value itself.

In an environment diagram, we can summarize this rule with,

Copy exactly what is in the box!

2.1 Write a list comprehension that accomplishes each of the following tasks.

(a) Square all the elements of a given list, `lst`.

(b) Compute the dot product of two lists `lst1` and `lst2`. **Hint**: The dot product is defined as `lst1[0] \cdot lst2[0] + lst1[1] \cdot lst2[1] + \ldots + lst1[n] \cdot lst2[n]`. The Python `zip` function may be useful here.

(c) Return a list of lists such that `lol = [[[0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]].`

(d) Return the same list as above, except now excluding every instance of the number 2: `lold = [[[0], [0, 1], [0, 1], [0, 1, 3], [0, 1, 3, 4]]].`
2.2 Draw the environment diagram that results from running the following code.

```python
pom = [16, 15, 13]
pompom = pom * 2
pompom.append(pom[:])
pom.extend(pompom)
```

2.3 Draw the environment diagram that results from running the following code.

```python
bless, up = 3, 5
another = [1, 2, 3, 4]
one = another[1:]

another[bless] = up
another.append(one.remove(2))
another[another[0]] = one
one[another[0]] = another[1]
one = one + [another.pop(3)]
another[0] = one[1][1][0]
one.append([one.pop(1)])
```

2.4 ```python
def jerry(jerry):
 def jerome(alex):
 alex.append(jerry[1:])
 return alex
 return jerome

ben = ['nice', ['ice']]
jerome = jerry(ben)
alex = jerome(['cream'])
ben[1].append(alex)
ben[1][1][1] = ben
print(ben)
```
2.5 Implement `subset_sum`, which takes in a list of integers and a number \(k\) and returns whether there is a subset of the list that adds up to \(k\)? *Hint*: Use the `in` operator to determine if an element belongs to a list.

```python
def subset_sum(seq, k):
 """
 >>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5
 True
 >>> subset_sum([1, 9, 5, 7, 3], 2)
 False
 """
```

2.6 Implement `subsets`, which takes in a list of values and an integer \(n\) and returns all subsets of the list of size exactly \(n\) in any order.

```python
def subsets(lst, n):
 """
 >>> three_subsets = subsets(list(range(5)), 3)
 >>> for subset in sorted(three_subsets):
 ... print(subset)
 [0, 1, 2]
 [0, 1, 3]
 [0, 1, 4]
 [0, 2, 3]
 [0, 2, 4]
 [0, 3, 4]
 [1, 2, 3]
 [1, 2, 4]
 [1, 3, 4]
 [2, 3, 4]
 """
```
3 Recursion on Trees

3.1 A **min-heap** is a tree with the special property that every node’s value is less than or equal to the values of all of its branches.

```
def tree(root, branches=[]):
 return [root] + list(branches)

def root(tree):
 return tree[0]

def branches(tree):
 return tree[1:]
```

Implement `is_min_heap` which takes in a tree and returns whether the tree satisfies the min-heap property or not.

4 Growth

4.1 Give a tight asymptotic runtime bound for the following functions in $\Theta(\cdot)$ notation, or “Infinite” if the program does not terminate.

(a) `def one(n):
    while n > 0:
        n = n // 2`

(b) `def two(n):
    for i in range(n):
        for j in range(i):
            print(str(i), str(j))`

(c) `def three(n):
    i = 1
    while i <= n:
        for j in range(i):
            print(j)
        i *= 2`
For each of the questions below, give a $\Theta(\cdot)$ bound on the asymptotic runtime.

4.2\hspace{1em}def strange_add(n):
    if n == 0:
        return 1
    else:
        return strange_add(n - 1) + strange_add(n - 1)

4.3\hspace{1em}def belgian_waffle(n):
    i = 0
    total = 0
    while i < n:
        for j in range(n ** 2):
            total += 1
        i += 1
    return total

4.4\hspace{1em}def flip(n):
    return -n

    def pancake(n):
        if n < 1:
            return 1
        return flip(n) + pancake(n - 1) + pancake(n - 1)

4.5\hspace{1em}def toast(n):
    i = 0
    j = 0
    stack = 0
    while i < n:
        stack += pancake(n)
        i += 1
    while j < n:
        stack += 1
        j += 1
    return stack