1 Trees

Things to remember:

```python
def tree(label, branches=[]):
    return [label] + list(branches)

def label(tree):
    return tree[0]

def branches(tree):
    return tree[1:]
```

1. Draw the tree that is created by the following statement:

```python
tree(4,
    [tree(5, []),
     tree(2,
         [tree(2, []),
          tree(1, [])]),
     tree(1, []),
     tree(8,
         [tree(4, [])]))
```
2. Construct the following tree and save it to the variable `t`.

```plaintext
         9
        /|
       2 4 4
      /|
     1 7 3
```

3. What would this output?
   ```python
   >>> label(t)
   >>> branches(t)[2]
   >>> branches(branches(t)[2])[0]
   ```

4. Write the Python expression to return the integer 2 from `t`.

5. Write the function `sum_of_nodes` which takes in a tree and outputs the sum of all the elements in the tree.
   ```python
def sum_of_nodes(t):
    """
    >>> t = tree(...) # Tree from question 2.
    >>> sum_of_nodes(t) # 9 + 2 + 4 + 4 + 1 + 7 + 3 = 30
    30
    """
   ```
6. In big-Θ notation, what is the runtime for \texttt{foo}?
 (a) \texttt{def foo(n):}
 \texttt{for i in range(n):}
 \texttt{print('hello')}

 (b) What’s the runtime of \texttt{foo} if we change \texttt{range(n)}:
 i. To \texttt{range(n / 2)}?
 ii. To \texttt{range(10)}?
 iii. To \texttt{range(1000000)}?

7. What is the order of growth in time for the following functions? Use big-Θ notation.
 (a) \texttt{def strange_add(n):}
 \texttt{if n == 0:}
 \texttt{return 1}
 \texttt{else:}
 \texttt{return strange_add(n - 1) + strange_add(n - 1)}

 (b) \texttt{def stranger_add(n):}
 \texttt{if n < 3:}
 \texttt{return n}
 \texttt{elif n \% 3 == 0:}
 \texttt{return stranger_add(n - 1) + stranger_add(n - 2) +}
 \texttt{stranger_add(n - 3)}
 \texttt{else:}
 \texttt{return n}
(c) def waffle(n):
 i = 0
 total = 0
 while i < n:
 for j in range(50 * n):
 total += 1
 i += 1
 return total

(d) def belgian_waffle(n):
 i = 0
 total = 0
 while i < n:
 for j in range(n ** 2):
 total += 1
 i += 1
 return total

(e) def pancake(n):
 if n == 0 or n == 1:
 return n
 # Flip will always perform three operations and return -n.
 return flip(n) + pancake(n - 1) + pancake(n - 2)

(f) def toast(n):
 i = 0
 j = 0
 stack = 0
 while i < n:
 stack += pancake(n)
 i += 1
 while j < n:
 stack += 1
 j += 1
 return stack
8. Consider the following functions:

```python
def hailstone(n):
    print(n)
    if n < 2:
        return
    if n % 2 == 0:
        hailstone(n // 2)
    else:
        hailstone((n * 3) + 1)

def fib(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)

def foo(n, f):
    return n + f(500)
```

In big-Θ notation, describe the runtime for the following:

(a) `foo(10, hailstone)`

(b) `foo(3000, fib)`

9. **Orders of Growth and Trees:** Assume we are using the non-mutable tree implementation introduced in discussion. Consider the following function:

```python
def word_finder(t, p, word):
    if root(t) == word:
        p -= 1
        if p == 0:
            return True
    for branch in branches(t):
        if word_finder(branch, p, word):
            return True
    return False
```

(a) What does this function do?

(b) If a tree has n total nodes, what is the total runtime in big-Θ notation?