61A Lecture 1

Wednesday, August 23, 2017 (or perhaps even earlier)
Welcome to CS 61A!

You have two instructors this semester

John DeNero Paul Hilfinger
denero@berkeley.edu hilfinger@cs.berkeley.edu

Office hours in 781 Soda (starting next week) Office hours in 787 Soda (starting next week)
Wed 2pm–3pm & Thurs 11am–12pm Time TBD
By appointment: denero.org/meet.html

Best way to reach us: piazza.com/berkeley/fall2017/cs61a

Contact both of us & heads of staff: cs61a@berkeley.edu
The 61A Community

53 teaching assistants (TAs), formally known at Berkeley as UGSIs:
- Teach lab & discussion sections
- Hold office hours
- Lots of other stuff: develop assignments, grade exams, etc.

50+ tutors & mentors:
- Teach mentoring sections
- Hold office hours
- Lots of other stuff: homework parties, mastery sections, etc.

200+ lab assistants help answer individual questions & check your progress

1,900+ fellow students make CS 61A unique
Parts of the Course

Lecture: Videos posted to cs61a.org before each live lecture

Lab section: The most important part of this course (*next week*)

Discussion section: The most important part of this course (*this week*)

Staff office hours: The most important part of this course (*next week*)

Online textbook: http://composingprograms.com

Weekly homework assignments, three exams, & four programming projects

Lots of optional special events to help you complete all this work
An Introduction to Computer Science
What is Computer Science?

The study of

- What problems can be solved using computation,
- How to solve those problems, and
- What techniques lead to effective solutions

Systems
- Artificial Intelligence
- Graphics
- Security
- Networking
- Programming Languages
- Theory
- Scientific Computing

Decision Making
- Robotics
- Natural Language Processing

Answering Questions
- Translation

...
What is This Course About?

A course about managing complexity

Mastering abstraction

Programming paradigms

An introduction to programming

Full understanding of Python fundamentals

Combining multiple ideas in large projects

How computers interpret programming languages

Different types of languages: Scheme & SQL

A challenging course that will demand a lot of you
Alternatives to CS 61A
CS 10: The Beauty and Joy of Computing

Designed for students without prior experience

A programming environment created by Berkeley, now used in courses around the world and online

An introduction to fundamentals (& Python) that sets students up for success in CS 61A

Taught in Fall 2017 by Dan Garcia

50 seats available as of Tuesday 8/22 (but these will likely fill up)

More info: http://cs10.org/fa17/
Data Science 8: Foundations of Data Science

Fundamentals of computing, statistical inference, & machine learning applied to real-world data sets

More statistics than computer science

Great programming practice for CS 61A

Cross-listed as CS C8, Stat C8, & Info C8

Fall 2017: David Wagner & John DeNero

100+ seats available as of Tuesday 8/22

More info: http://data8.org/fa17
Course Policies

Learning

Community

Course Staff

Details...

http://cs61a.org/articles/about.html
Collaboration

Asking questions is highly encouraged
• Discuss everything with each other; learn from your fellow students!
• Projects 3 & 4 can be completed with a partner
• Choose a partner from your discussion section

The limits of collaboration
• One simple rule: Don’t share your code, except with your project partner
• Copying project solutions causes people to fail the course
• We really do catch people who violate the rules, because...
 • We also know how to search the web for solutions
 • We use computers to check your work

Build good habits now
Expressions
Types of expressions

An expression describes a computation and evaluates to a value

\[
\begin{align*}
18 + 69 & \quad \frac{6}{23} & \quad \sin \pi & \quad \log_2 1024 \\
2^{100} & \quad \left\lfloor f(x) \right\rfloor & \quad \sqrt{3493161} & \quad \lim_{x \to \infty} \frac{1}{x} \\
7 \mod 2 & \quad \sum_{i=1}^{100} i & \quad \begin{pmatrix} 69 \\ 18 \end{pmatrix} & \quad | -1869 |
\end{align*}
\]
All expressions can use function call notation

(Demo)
Anatomy of a Call Expression

Operators and operands are also expressions

So they evaluate to values

Evaluation procedure for call expressions:

1. Evaluate the operator and then the operand subexpressions

2. Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpression
Evaluating Nested Expressions

\[\text{mul}(\text{add}(4, \text{mul}(4, 6)), \text{add}(3, 5)) \]
Evaluating Nested Expressions

Expression tree

Operand subexpression

Value of subexpression

1st argument to mul

Value of the whole expression

mul(add(4, mul(4, 6)), add(3, 5))

mul

add(4, mul(4, 6))

add(4, mul(4, 6))

mul

add(3, 5)

add

mul(4, 6)

mul

add

mul

4

24

6

28

8

4

5

3

224
Functions, Values, Objects, Interpreters, and Data

(Demo)