The 61A Community

57 teaching assistants (TAs), formally known at Berkeley as GSIs or UGSIs:
• Teach lab & discussion sections
• Hold drop-in office hours
• Lots of other stuff: develop assignments, grade exams, etc.

50+ mentors:
• Teach mentoring sections
• Hold drop-in office hours
• Lots of other stuff: homework parties, mastery sections, etc.

200+ academic interns help answer individual questions during lab

2,000 fellow students make CS 61A unique

Parts of the Course

Lecture: Videos posted to cs61a.org before each live lecture
Lab section: The most important part of this course (next week)
Discussion section: The most important part of this course (this week)
Staff office hours: The most important part of this course (next week)
Online textbook: http://composingprograms.com

Weekly homework assignments, three exams, & four programming projects
Lots of optional special events to help you complete all this work

Everything is posted to cs61a.org

Announcements

An Introduction to Computer Science

What is Computer Science?

- The study of ...
- What problems can be solved using computation,
 How to solve those problems, and
 What techniques lead to effective solutions

- Systems
- Artificial Intelligence
- Graphics
- Security
- Networking
- Programming Languages
- Theory
- Scientific Computing

Decision Making
- Robotics
- Natural Language Processing

Answering Questions
- Translation

- What is This Course About?
- A course about managing complexity
- Mastering abstraction
- Programming paradigms
- An introduction to programming
- Full understanding of Python fundamentals
- Combining multiple ideas in large projects
- How computers interpret programming languages
- Different types of languages: Scheme & SQL
- A challenging course that will demand a lot of you
Alternatives to CS 61A

Data Science 8: Foundations of Data Science

Course Policies

Expressions
Call Expressions in Python

All expressions can use function call notation

(Demo)

Anatomy of a Call Expression

Evaluation procedure for call expressions:
1. Evaluate the operator and then the operand subexpressions
2. Apply the function that is the value of the operator to the arguments that are the values of the operands

So they evaluate to values

Operators and operands are also expressions

Evaluating Nested Expressions

Expression tree

Operand subexpression

Value of the whole expression

Value of subexpression

1st argument to mul

Functions, Values, Objects, Interpreters, and Data

(Demo)