
Functions

Announcements

Assignment Statements

Assignment Statements

The expression (right) is evaluated, and its value is assigned to the name (left).

>>> x = 2

>>> y = x + 1

>>> y

3

>>> x = 5

>>> x

5

>>> y

3

4

x = 1 + 2

x - 1 = 2
1 + 2 = x

assigns the value of the expression on the rightAn assignment statement

to the name on the left

(Demo)

Environment Diagrams

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment

2. Bind the function's formal parameters to its arguments in that frame

3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Formal parameter
bound to argument Return value 

(not a binding!)

Built-in function

User-defined
function

6
http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Frames & Environments

Frame: Holds name-value bindings; looks like a box; no repeated names allowed!

Global frame: The frame with built-in names (min, pow, etc.)

Environment: A sequence of frames that always ends with the global frame

Lookup: Find the value for a name by looking in each frame of an environment

A name (which is a type of expression) such as x is evaluated by looking it up

7

A Sequence of Frames

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the  
current environment in which that name is found.

8

...

f1

...

f2

...

Global Frame

ea
rl

ie
r

la
te

r

The global frame is
always the last
place you look

Even though all three frames are in the same diagram,
they might not be in the same environment

(Demo)

Frames & Environments

Why organize information this way?

• Local context before global context

• Calling or returning changes the local context

• Assignment within a function's local frame doesn't affect other frames

9

(Demo)

Multiple Assignment

Multiple Assignment

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the current frame.

11

Just executed

Just executed

Next to execute

http://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Ab%20%3D%202%0Ab,%20a%20%3D%20a%20%2B%20b,%20b&cumulative=false&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

(Demo)

Print and None

(Demo)

Break: 5 minutes

Small Expressions

Problem Definition

Imagine you can call only the following three functions:

- f(x): decrement an integer x to get x-1

- g(x): increment then double an integer x to get 2*(x+1)

- h(x, y): Concatenates the digits of two different
positive integers x and y. For example, h(789, 12)
evaluates to 78912 and h(12, 789) evaluates to 12789.

Definition: A small expression is a call expression that
contains only f, g, h, the number 5, and parentheses. All
of these can be repeated. For example, h(g(5), f(f(5))) is
a small expression that evaluates to 103.

What's the shortest small expression you can find that
evaluates to 2025?

15

A modified version of lab0... How do you get to 2025?

5➡4➡10➡9➡20
5➡4➡3➡2

5

Fewest calls? 
Shortest length when written?

Effective problem solving:

• Understand the problem

• Come up with ideas

• Turn those ideas into solutions

h(g(f(g(f(5)))),h(f(f(f(5))),5))

Search

16

A common strategy: try a bunch of options to see which is best

Computer programs can evaluate many alternatives by repeating simple operations

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

17

f(f(f(5))) -> 2

g(f(f(5))) -> 8

f(g(f(5))) -> 9

g(g(f(5))) -> 22

f(f(g(5))) -> 10

g(f(g(5))) -> 24

f(g(g(5))) -> 25

g(g(g(5))) -> 54

h(5,f(f(5))) -> 53

h(5,g(f(5))) -> 510

h(5,f(g(5))) -> 511

h(5,g(g(5))) -> 526

h(5,f(h(5,5))) -> 554

h(5,g(h(5,5))) -> 5112

h(5,h(5,f(5))) -> 554

h(5,h(5,g(5))) -> 5512

h(5,h(5,h(5,5))) -> 5555

h(5,h(f(5),5)) -> 545

h(5,h(g(5),5)) -> 5125

h(5,h(h(5,5),5)) -> 5555

h(f(5),f(5)) -> 44

h(f(5),g(5)) -> 412

h(f(5),h(5,5)) -> 455

f(f(h(5,5))) -> 53

g(f(h(5,5))) -> 110

f(g(h(5,5))) -> 111

g(g(h(5,5))) -> 226

f(h(5,f(5))) -> 53

g(h(5,f(5))) -> 110

f(h(5,g(5))) -> 511

g(h(5,g(5))) -> 1026

f(h(5,h(5,5))) -> 554

g(h(5,h(5,5))) -> 1112

f(h(f(5),5)) -> 44

g(h(f(5),5)) -> 92

f(h(g(5),5)) -> 124

g(h(g(5),5)) -> 252

f(h(h(5,5),5)) -> 554

g(h(h(5,5),5)) -> 1112

Reminder: f(x) decrements; g(x) increments then doubles; h(x, y) concatenates

h(g(5),f(5)) -> 124

h(g(5),g(5)) -> 1212

h(g(5),h(5,5)) -> 1255

h(h(5,5),f(5)) -> 554

h(h(5,5),g(5)) -> 5512

h(h(5,5),h(5,5)) -> 5555

h(f(f(5)),5) -> 35

h(g(f(5)),5) -> 105

h(f(g(5)),5) -> 115

h(g(g(5)),5) -> 265

h(f(h(5,5)),5) -> 545

h(g(h(5,5)),5) -> 1125

h(h(5,f(5)),5) -> 545

h(h(5,g(5)),5) -> 5125

h(h(5,h(5,5)),5) -> 5555

h(h(f(5),5),5) -> 455

h(h(g(5),5),5) -> 1255

h(h(h(5,5),5),5) -> 5555

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

18

f(g(h(f(f(g(5))),g(5)))) -> 2025 has 7 calls

Reminder: f(x) decrements; g(x) increments then doubles; h(x, y) concatenates

f(g(h(g(f(5)),g(5)))) -> 2025 has 6 calls

2025
5➡4➡10➡9➡20

5➡4➡3➡2
5

f(g(g(f(g(g(h(g(5),5))))))) -> 2025 has 8 calls

f(g(g(h(g(g(f(g(5)))),5)))) -> 2025 has 8 calls

f(h(g(f(g(f(5)))),g(g(5)))) -> 2025 has 8 calls

h(g(f(g(f(5)))),f(g(g(5)))) -> 2025 has 8 calls

h(g(g(f(g(g(f(g(5))))))),5) -> 2025 has 8 calls

h(g(g(h(f(5),f(g(f(5)))))),5) -> 2025 has 8 calls
h(g(f(g(f(5)))),h(f(f(f(5))),5)) -> 2025 has 9 calls

125➡252➡506➡505➡1012➡2026➡2025

5➡12➡11➡10 5➡12

5➡4➡10 5➡12

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

19

def smalls(n):

 if n == 0:

 yield Number(5)

 else:

 for operand in smalls(n-1):

 yield Call(f, [operand])

 yield Call(g, [operand])

 for k in range(n):

 for first in smalls(k):

 for second in smalls(n-k-1):

 if first.value > 0 and second.value > 0:

 yield Call(h, [first, second])

result = []

for i in range(9):

 result.extend([e for e in smalls(i) if e.value == 2025])

def f(x):

 return x - 1

def g(x):

 return 2 * (x + 1)

def h(x, y):

 return int(str(x) + str(y))

class Number:

 def __init__(self, value):

 self.value = value

 def __str__(self):

 return str(self.value)

 def calls(self):

 return 0

class Call:

 """A call expression."""

 def __init__(self, f, operands):

 self.f = f

 self.operands = operands

 self.value = f(*[e.value for e in operands])

 def __str__(self):

 return f'{self.f.__name__}({",".join(map(str, self.operands))})'

 def calls(self):

 return 1 + sum(o.calls() for o in self.operands)

Functions

Containers

Objects

Representation

Sequences

Iterators

Mutability

Generators

Recursion

Tree
Recursion

Control

Higher-Order Functions

By the end of Week 4, you can do this!

