Higher-Order Functions
Class outline:

- Iteration example
- Designing functions
- Generalization
- Higher-order functions
- Lambda expressions
- Conditional expressions
Iteration example
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later rediscovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 5 8 13 21 34 ...
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later rediscovered in Western mathematics and commonly known as Fibonacci numbers.

\[0 + 1 = 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \ldots\]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[
\begin{align*}
0 & \quad 1 & + & 1 & = & 2 & 3 & 5 & 8 & 13 & 21 & 34 & \ldots \\
\end{align*}
\]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600–800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[0 \quad 1 \quad 1 + 2 = 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad ...\]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 + 3 = 5 8 13 21 34 ...
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 + 5 = 8 13 21 34 ...
Virahaṇka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 5 +8 = 13 21 34 ...
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600–800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 5 8 + 13 = 21 34 ...

...

...
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600–800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 5 8 13 + 21 = 34 …
Virahanka's question

How many poetic meters exist for a total duration?

S = short syllable, L = long syllable

<table>
<thead>
<tr>
<th>Duration</th>
<th>Meters</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>SS, L</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>SSS, SL, LS</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>SSSS, SSL, SLS, LSS, LL</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>SSSSS, SSSL, SSLS, SLSS, SLL, LLS, LLSL, LSSS</td>
<td>8</td>
</tr>
</tbody>
</table>

The So-called Fibonacci Numbers in Ancient and Medieval India
Fibonacci's question

How many pairs of rabbits can be bred after N months?
Attribution: Fschwarzentruber, Wikipedia
Virahanka-Fibonacci number generation

VF 0 1 1 2 3 5 8 13 21 34 55 ...
N 0 1 2 3 4 5 6 7 8 9 10 ...

def vf_number(n):
 """Compute the nth Virahanka-Fibonacci number, for N >= 1."
 >>> vf_number(2)
 1
 >>> vf_number(6)
 8
 """
 prev = 0 # First Fibonacci number
 curr = 1 # Second Fibonacci number
 k = 1
 while k < n:
 (prev, curr) = (curr, prev + curr)
 k += 1
 return curr
Golden spiral

The Golden spiral can be approximated by Virahanka-Fibonacci numbers.
Go bears!

The Golden spiral is found everywhere in nature...
Designing Functions
def square(x):
 """Returns the square of X.""
 return x * x

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A function's domain is the set of all inputs it might possibly take as arguments.</td>
<td>x is a number</td>
</tr>
<tr>
<td>A function's range is the set of output values it might possibly return.</td>
<td>square returns a non-negative real number</td>
</tr>
<tr>
<td>A pure function's behavior is the relationship it creates between input and output.</td>
<td>square returns the square of x</td>
</tr>
</tbody>
</table>
Designing a function

Give each function exactly one job, but make it apply to many related situations.

```python
round(1.23)      # 1
round(1.23, 0)   # 1
round(1.23, 1)   # 1.2
round(1.23, 5)   # 1.23
```

Don't Repeat Yourself (DRY): Implement a process just once, execute it many times.
Generalization
Generalizing patterns with arguments

Geometric shapes have similar area formulas.

<table>
<thead>
<tr>
<th>Shape</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>$1 \times r^2$</td>
<td>$\pi \times r^2$</td>
</tr>
</tbody>
</table>
A non-generalized approach

```python
from math import pi, sqrt

def area_square(r):
    return r * r

def area_circle(r):
    return r * r * pi

def area_hexagon(r):
    return r * r * (3 * sqrt(3) / 2)
```

How can we generalize the common structure?
from math import pi, sqrt

def area(r, shape_constant):
 """Return the area of a shape from length measurement R."""
 if r < 0:
 return 0
 return r * r * shape_constant

def area_square(r):
 return area(r, 1)

def area_circle(r):
 return area(r, pi)

def area_hexagon(r):
 return area(r, 3 * sqrt(3) / 2)
Higher-order functions
What are higher-order functions?

A function that either:

- Takes another function as an argument
- Returns a function as its result

All other functions are considered first-order functions.
Generalizing over computational processes

\[\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5 = 15 \]

\[\sum_{k=1}^{5} k^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 225 \]

\[\sum_{k=1}^{5} \frac{8}{(4k - 3) \cdot (4k - 1)} = \frac{8}{3} + \frac{8}{35} + \frac{8}{99} + \frac{8}{195} + \frac{8}{323} \]

The common structure among functions may be a computational process, not just a number.
def cube(k):
 return k ** 3

def summation(n, term):
 """Sum the first N terms of a sequence.
 >>> summation(5, cube)
 225
 """
 total = 0
 k = 1
 while k <= n:
 total = total + term(k)
 k = k + 1
 return total
Functions as return values
def make_adder(n):
 """Return a function that takes one argument k and returns k + n."
 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """

def adder(k):
 return k + n

return adder
Call expressions as operator expressions

\[
\text{make}_\text{adder}(1)(\underline{\text{Operator}} \underline{\text{Operand}}}
\]

23
Call expressions as operator expressions

```
make_adder(1)( 2 )
```

```
make_adder(1)
```

Operator

Operand
Call expressions as operator expressions

\[
\text{make_adder}(1) (\quad 2 \quad)
\]

\[
\text{make_adder}(1)
\]

\[
\text{func make_adder...}
\]
Call expressions as operator expressions

\[
\text{make_adder}(1)(\quad 2\quad)
\]

\[
\text{make_adder}(1)
\]

\[
\text{func make_adder...} \quad 1
\]
Call expressions as operator expressions

\[
\text{func make_adder...} \quad 1
\]

\[
\text{make_adder}(n)
\]

\[
\text{def adder}(k):
 \text{return } k + n
\]

\[
\text{return adder}
\]
Call expressions as operator expressions

make_adder(1)(2)

make_adder(n)
def adder(k):
 return k + n
return adder
Call expressions as operator expressions

```
make_adder(1)(
    2
)
```

```
def adder(k):
    return k + n
return adder
```
Call expressions as operator expressions

make_adder(1)(2)

func make_adder...

func adder(k)

make_adder(1)

make_adder(n)

def adder(k):
 return k + n
return adder

fur
Lambda expressions
Lambda syntax

A **lambda expression** is a simple function definition that evaluates to a function.

The syntax:

```
lambda <parameters>: <expression>
```

A function that takes in **parameters** and returns the result of **expression**.
Lambda syntax

A **lambda expression** is a simple function definition that evaluates to a function.

The syntax:

```
lambda <parameters>: <expression>
```

A function that takes in **parameters** and returns the result of **expression**.

A lambda version of the **square** function:

```
square = lambda x: x * x
```

A function that takes in parameter \(x \) and returns the result of \(x * x \).
Lambda syntax tips

A lambda expression does **not** contain return statements or any statements at all.

Incorrect:

```python
square = lambda x: return x * x
```

Correct:

```python
square = lambda x: x * x
```
Def statements vs. Lambda expressions

<table>
<thead>
<tr>
<th>def square(x):</th>
<th>vs</th>
<th>square = lambda x: x * x</th>
</tr>
</thead>
<tbody>
<tr>
<td>return x * x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Both create a function with the same domain, range, and behavior.

Both bind that function to the name square.

Only the `def` statement gives the function an **intrinsic name**, which shows up in environment diagrams but doesn't affect execution (unless the function is printed).
Lambda as argument

It's convenient to use a lambda expression when you are passing in a simple function as an argument to another function.

Instead of...

def cube(k):
 return k ** 3

summation(5, cube)

We can use a lambda:

summation(5, lambda k: k ** 3)
Conditional expressions
Conditional expressions

A conditional expression has the form:

\[\text{<consequent>} \text{ if } \text{<predicate>} \text{ else } \text{<alternative>} \]

Evaluation rule:

- Evaluate the <predicate> expression.
- If it's a true value, the value of the whole expression is the value of the <consequent>.
- Otherwise, the value of the whole expression is the value of the <alternative>.
Lambdas with conditionals

This is invalid syntax:

\[
\text{lambda } x: \text{ if } x > 0: x \text{ else: } 0
\]

Conditional expressions to the rescue!

\[
\text{lambda } x: x \text{ if } x > 0 \text{ else } 0
\]