Higher-Order Functions
Class outline:

- Iteration example
- Designing functions
- Generalization
- Higher-order functions
- Lambda expressions
- Conditional expressions
Iteration example
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600–800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 5 8 13 21 34 ...
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[0 + 1 = 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad ... \]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600–800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[0 \quad 1 + 1 = 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \ldots \]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[0 \quad 1 \quad 1 + 2 = 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \ldots \]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[
\begin{align*}
0 & \quad 1 & \quad 1 & \quad 2 & \quad +3 & \quad = & \quad 5 & \quad 8 & \quad 13 & \quad 21 & \quad 34 & \quad \ldots
\end{align*}
\]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 + 5 = 8 13 21 34 ...
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 2 & 3 & 5 & +8 & = & 13 & 21 & 34 & \ldots
\end{array}
\]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

\[
0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad + \quad 13 \quad = \quad 21 \quad 34 \quad \ldots
\]
Virahaṅka-Fibonacci numbers

Discovered by Virahanka in India, 600–800 AD, later re-discovered in Western mathematics and commonly known as Fibonacci numbers.

0 1 1 2 3 5 8 13 + 21 = 34 ...
Virahanka's question

How many poetic meters exist for a total duration?

S = short syllable, L = long syllable

<table>
<thead>
<tr>
<th>Duration</th>
<th>Meters</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>SS, L</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>SSS, SL, LS</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>SSSS, SSL, SLS, LSS, LL</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>SSSSS, SSSL, SSLS, SLSS, SLL, LLS, LSL, LSSS</td>
<td>8</td>
</tr>
</tbody>
</table>

The So-called Fibonacci Numbers in Ancient and Medieval India
Fibonacci's question

How many pairs of rabbits can be bred after N months?
Attribution: Fschwarzentruber, Wikipedia
Virahanka-Fibonacci number generation

VF 0 1 1 2 3 5 8 13 21 34 55 ...
N 0 1 2 3 4 5 6 7 8 9 10 ...

def vf_number(n):
 """Compute the nth Virahanka-Fibonacci number, for N >= 1.
 >>> vf_number(2)
 1
 >>> vf_number(6)
 8
 """
 prev = 0 # First Fibonacci number
 curr = 1 # Second Fibonacci number
 k = 1
 while k < n:
 (prev, curr) = (curr, prev + curr)
 k += 1
 return curr
Golden spiral

The Golden spiral can be approximated by Virahanka-Fibonacci numbers.
Go bears!

The Golden spiral is found everywhere in nature...
Designing Functions
def square(x):
 """Returns the square of X.""
 return x * x

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A function's domain is the set of all inputs it might possibly take as arguments.</td>
<td>x is a number</td>
</tr>
<tr>
<td>A function's range is the set of output values it might possibly return.</td>
<td>square returns a non-negative real number</td>
</tr>
<tr>
<td>A pure function's behavior is the relationship it creates between input and output.</td>
<td>square returns the square of x</td>
</tr>
</tbody>
</table>
Designing a function

Give each function exactly one job, but make it apply to many related situations.

```python
round(1.23)   # 1
round(1.23, 0) # 1
round(1.23, 1) # 1.2
round(1.23, 5) # 1.23
```

Don't Repeat Yourself (DRY): Implement a process just once, execute it many times.
Generalization
Generalizing patterns with arguments

Geometric shapes have similar area formulas.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1 \cdot r^2$</td>
</tr>
</tbody>
</table>
A non-generalized approach

```python
from math import pi, sqrt

def area_square(r):
    return r * r

def area_circle(r):
    return r * r * pi

def area_hexagon(r):
    return r * r * (3 * sqrt(3) / 2)
```

How can we generalize the common structure?
from math import pi, sqrt

def area(r, shape_constant):
 """Return the area of a shape from length measurement R."""
 if r < 0:
 return 0
 return r * r * shape_constant

def area_square(r):
 return area(r, 1)

def area_circle(r):
 return area(r, pi)

def area_hexagon(r):
 return area(r, 3 * sqrt(3) / 2)
Higher-order functions
What are higher-order functions?

A function that either:

- Takes another function as an argument
- Returns a function as its result

All other functions are considered first-order functions.
Generalizing over computational processes

\[
\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5 = 15
\]

\[
\sum_{k=1}^{5} k^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 225
\]

\[
\sum_{k=1}^{5} \frac{8}{(4k - 3) \cdot (4k - 1)} = \frac{8}{3} + \frac{8}{35} + \frac{8}{99} + \frac{8}{195} + \frac{8}{323}
\]

The common structure among functions may be a computational process, not just a number.
Functions as arguments

def cube(k):
 return k ** 3

def summation(n, term):
 """Sum the first N terms of a sequence.
 >>> summation(5, cube)
 225
 """
 total = 0
 k = 1
 while k <= n:
 total = total + term(k)
 k = k + 1
 return total
Functions as return values
Locally defined functions

Functions defined within other function bodies are bound to names in a local frame.

```python
def make_adder(n):
    """Return a function that takes one argument k and returns k + n."
    >>> add_three = make_adder(3)
    >>> add_three(4)
    7
    """
    def adder(k):
        return k + n
    return adder
```
Call expressions as operator expressions

\[\text{make_adder}(1)(\underline{\text{Operator}}\ 2\ \underline{\text{Operand}}) \]
Call expressions as operator expressions

\[
\text{make_adder}(1)(\quad 2 \quad)
\]

- Operator
- Operand

\[
\text{make_adder}(1)
\]
Call expressions as operator expressions

\[
\text{make_adder(1)}()\text{ (2\quad)}
\]

Operator

Operand

\[
\text{make_adder(1)}()
\]

\[
\text{func \ make_adder...}
\]
Call expressions as operator expressions

\[
\text{make_adder}(1)(\
\text{Operator} \
\text{Operand} \\
\text{make_adder}(1) \\
\text{func make_adder}... \\
1
\]

Call expressions as operator expressions

```
def adder(k):
    return k + n
return adder
```

```
make_adder(1)(2)
```

```
func make_adder...
```

```
make_adder(1)
```

Operator

Operand
Call expressions as operator expressions

```
def make_adder(k):
    return k + n

func make_adder...

func make_adder...

make_adder(1)
```

```
def adder(k):
    return k + n

adder(1)
```

```
make_adder(1)( 2 )
```

```
make_adder(n)
```
Call expressions as operator expressions

\[
\text{make_adder}(1)\left(\text{adder}(1)\right)\left(\text{adder}(2)\right)
\]

\[
\text{func} \quad \text{adder}(k)
\]

\[
\text{func} \quad \text{make_adder}...
\]

\[
\text{def} \quad \text{adder}(k):
 \text{return} \text{ k + n}
\]

\[
\text{return} \text{ adder}
\]
Call expressions as operator expressions

```
def adder(k):
    return k + n

make_adder = lambda n: lambda k: adder(k)
```

```
make_adder(1)(2)
```

Diagram:
- `func make_adder`
- `func adder(k)`
- `make_adder(1)`
- `operator`
- `operand`
- `1`
- `2`
Lambda expressions
Lambda syntax

A **lambda expression** is a simple function definition that evaluates to a function.

The syntax:

```
lambda <parameters>: <expression>
```

A function that takes in **parameters** and returns the result of **expression**.
Lambda syntax

A **lambda expression** is a simple function definition that evaluates to a function.

The syntax:

```
lambda <parameters>: <expression>
```

A function that takes in **parameters** and returns the result of **expression**.

A lambda version of the **square** function:

```
square = lambda x: x * x
```

A function that takes in parameter **x** and returns the result of **x * x**.
Lambda syntax tips

A lambda expression does **not** contain return statements or any statements at all.

Incorrect:

```python
square = lambda x: return x * x
```

Correct:

```python
square = lambda x: x * x
```
Def statements vs. Lambda expressions

```python
def square(x):
    return x * x
```

```python
square = lambda x: x * x
```

Both create a function with the same domain, range, and behavior.

Both bind that function to the name square.

Only the `def` statement gives the function an **intrinsic name**, which shows up in environment diagrams but doesn't affect execution (unless the function is printed).
Lambda as argument

It's convenient to use a lambda expression when you are passing in a simple function as an argument to another function.

Instead of...

```python
def cube(k):
    return k ** 3

summation(5, cube)
```

We can use a lambda:

```python
summation(5, lambda k: k ** 3)
```
Conditional expressions
Conditional expressions

A conditional expression has the form:

```
<consequent> if <predicate> else <alternative>
```

Evaluation rule:

- Evaluate the `<predicate>` expression.
- If it's a true value, the value of the whole expression is the value of the `<consequent>`.
- Otherwise, the value of the whole expression is the value of the `<alternative>`.
Lambdas with conditionals

This is invalid syntax:

\[
\text{lambda } x: \text{ if } x > 0: x \text{ else: } 0
\]

Conditional expressions to the rescue!

\[
\text{lambda } x: x \text{ if } x > 0 \text{ else } 0
\]