Announcements

- Phase 1 of Hog project due Tuesday night (1 point).
- Submitting whole project by Thursday night earns 1 point of extra credit.
- Homework 2 due Thursday night,
- Lab party on Monday (2/1) from 4-5:30PM PT (see @430).
- Project party on Tuesday (2/2) from 7-8:30PM PT (see @430)
- Ask questions on the Piazza thread for today's lecture (@438).

Review: Philosophy of Functions (I)

```python
def sqrt(x):
    """Assuming X >= 0, returns approximation to square root of X."""
```

- Specifies a **contract** between caller and function implementer.

Philosophy of Functions (II)

- Ideally, the specification (syntactic and semantic) should suffice to use the function (i.e., without seeing its body).
- There is a **separation of concerns** here:
 - The caller (client) is concerned with providing values of x and using the results, but **not** how the result is computed.
 - The implementer is concerned with how the result is computed, but **not** where x comes from or how the value is used.
 - From the client's point of view, sqrt is an abstraction from the set of possible ways to compute this result.
 - Therefore, we call this functional abstraction.
- Programming is largely about choosing abstractions that lead to clear, fast, and maintainable programs.
Simple Linear Recursions

• Take another look at the problem of adding squares of integers:

def sum_squares(N):
 """Return The sum of K**2 for K from 1 to N (inclusive).""
 if N < 1:
 return 0 # When is this answer correct?
 else:
 return sum_squares(N - 1) + N**2

Last modified: Tue Feb 2 16:43:38 2021
Simple Linear Recursions

• Take another look at the problem of adding squares of integers:
  ```python
def sum_squares(N):
    """Return The sum of K**2 for K from 1 to N (inclusive).""
    if N < 1:
      return 0
    else:
      # Use the comment!!
      return sum_squares(N - 1) + N**2
```

• This is a simple **linear recursion**, with one recursive call per function instantiation.

• Can imagine a call as an expansion:
  ```python
  sum_squares(3) => sum_squares(2) + 3**2
  => sum_squares(1) + 2**2 + 3**2
  => sum_squares(0) + 1**2 + 2**2 + 3**2
  => 0 + 1**2 + 2**2 + 3**2 => 14
  ```

• Each call in this expansion corresponds to an environment frame, linked to the global frame, as [shown in the Python Tutor](#).

Tail Recursion

• In Lecture #3, we saw a special kind of recursion that is strongly linked to iteration. Here is a variation of that example and a corresponding iterative version, with correspondences labeled (see boxes):
  ```python
  def sum_squares(N):
    """The sum of K**2 for 1 <= K <= N.""
    accum = 0
    k = 1
    while k <= N:
      accum = accum + k**2
      k = k + 1
    return accum
  
  def part_sum(accum, k):
    if k <= N:
      return part_sum(accum + k**2, k + 1)
    else:
      return accum
  
  def sum_squares(N):
    return part_sum(0, 1)
  ```

• The right version is a **tail-recursive function**, meaning that the recursive call is either the returned value or the very last action performed.

• The values of the parameters on the right correspond to the values of the local variables on the left, as shown here.

• Essentially this same technique can be applied to **while loops** generally.

Recursive Thinking

• So far in this lecture, I've shown recursive functions by tracing or repeated expansion of their bodies.

• But when you call a function from the Python library, you don’t look at its implementation, just its documentation (“the contract”).

• **Recursive thinking** is the extension of this same discipline to functions as you are defining them.

• When implementing `sum_squares`, we reason as follows:
 - **Base case**: We know the answer is 0 if there is nothing to sum \((N < 1)\).
 - Otherwise, we observe that the answer is \(N^2\) plus the sum of the positive integers from 1 to \(N - 1\).
 - But there is a function (`sum_squares`) that can compute \(1 + \ldots + N - 1\) (its comment says so).
 - So when \(N \geq 1\), we should return \(N^2 + sum_squares(N - 1)\).
 - This “recursive leap of faith” works as long as we can guarantee we’ll hit the base case.

Preventing Infinite Recursion

• To prevent an infinite recursion, we take the leap of faith only when
 - The recursive cases are "smaller" than the input case, and
 - There is a minimum "size" to the data, and
 - All chains of progressively smaller cases reach this minimum in a finite number of steps.

• We say that a set of values with such a "smaller than" relation is **well founded**.

• For example, the inputs can be a set of integers with a smallest member (like the non-negative or positive integers).

• Later, we'll see examples where the inputs are sequences of values and "smaller" means "shorter".
Induction

- In mathematics, we have various kinds of induction for proving that a property \(P(x) \) holds for all \(x \) in some set.
- You have likely seen the familiar sort of line-of-dominoes induction on integers:
 + If \(P(b) \) (the base case), and
 + \(P(k - 1) \) implies \(P(k) \) for all \(k > b \),
 + then \(P(k) \) for all \(k \geq b \).
- There is also a more general form called well-founded or Noetherian induction:
 + If \(P \) is some property (predicate) on a well-founded set with relation \(\prec \) such that
 + Whenever \(P(y) \) is true for all \(y \prec x \), then \(P(x) \) is also true,
 + Then \(P(x) \) is true for all \(x \).
- The sets here can be anything with a partial ordering (such as lists ordered by length).

Recursion and Induction

- So recursive thinking is a kind of inductive thinking.
- The property we want to demonstrate is that our function works on inputs of any size.
- Induction tells us that we can conclude that our function works on all inputs if
 1. Whenever our function works on all arguments that are smaller than a given input, it must also work on that input,
 2. Any sequence of inputs in which each is smaller than its predecessor must eventually end.
- The assumption that our function works on smaller arguments is the "recursive leap of faith."

Subproblems and Self-Similarity

- Recursive routines arise when solving a problem naturally involves solving smaller instances of the same problem.
- A classic example where the subproblems are visible is Sierpinski's Triangle (aka Sierpinski's Gasket).
- This triangle may be formed by repeatedly replacing a figure, initially a solid triangle, with three quarter-sized images of itself (1/2 size in each dimension), arranged in a triangle:

 ![Triangle](triangle.png)

- Or we can describe creating a "triangle of order \(N \) and size \(S \)" as drawing either
 - a solid triangle with side \(S \) if \(N = 0 \), or
 - three triangles of size \(S/2 \) and order \(N - 1 \) arranged in a triangle.

The Gasket in Python

- We can write this description as a recursive Python program that produces Postscript output suitable for printing (see 06.py).

```python
sin60 = sqrt(3) / 2
def make_gasket(n, x, y, s, output):
    """Write Postscript commands to OUTPUT that draw an Nth-order Sierpinski's gasket, with lower-left corner at (X,Y), and size S X S (units of points: 1/72 in.).""
    if n == 0:
        draw_solid_triangle(x, y, s, output)
    else:
        make_gasket(n - 1, x, y, s/2, output)
        make_gasket(n - 1, x + s/2, y, s/2, output)
        make_gasket(n - 1, x + s/4, y + sin60*s/2, s/2, output)

def draw_solid_triangle(x, y, s, output):
    """Draw a solid triangle lower-left corner at (X, Y) and side S on OUTPUT.""
    print(f"f\"[x:.2f] {y:.2f} moveto"
          f\"[s:.2f] 0 rlineto"
          f\"[-s/2:.2f] {y+sin60:.2f} rlineto"
          "closepath fill", file=output)
```

Last modified: Tue Feb 2 16:43:38 2021
Aside: The Gasket in Pure Postscript

- One can also perform the logic to generate figures directly in Postscript, which is itself a full-fledged programming language:

```postscript
%!sin60 3 sqrt 2 div def
/make_gasket {
  dup 0 eq {
    3 index 3 index moveto 1 index 0 rlineto 0 2 index rlineto
    1 index neg 0 rlineto closepath fill
  }
  {
    3 index 3 index 0.5 mul 3 index 1 sub make_gasket
    3 index 2 index 0.5 mul add 3 index 3 index 0.5 mul
    3 index 1 sub make_gasket
    3 index 2 index 0.25 mul add 3 index 3 index 0.5 mul add
    3 index 0.5 mul 3 index 1 sub make_gasket
  } ifelse
  pop pop pop pop
} def

100 100 400 8 make_gasket showpage
```

Discussion

- The `make_gasket` function in Python is a more complex (and frankly, more representative) use of recursion than previous examples in this lecture.
- These previous examples were linear recursions, where each call of the function resulted in it making one recursive call before returning.
- The gasket example, however, makes three calls.
- Thus, it is an example of a tree recursion, our topic for next time.