Announcements
Recursive Functions
Recursive Functions

Demo
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Demo
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.
Digit Sums

\[2 + 0 + 1 + 6 = 9\]
Digit Sums

2 + 0 + 1 + 6 = 9

• If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
Digit Sums

2 + 0 + 1 + 6 = 9

- If a number \(a \) is divisible by 9, then \(\text{sum_digits}(a) \) is also divisible by 9
- Useful for typo detection!
Digit Sums

2 + 0 + 1 + 6 = 9

• If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9
• Useful for typo detection!

The Bank of 61A
1234 5678 9098 7658
OSKI THE BEAR
Digit Sums

If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9

Useful for typo detection!

\[2 + 0 + 1 + 6 = 9\]

A checksum digit is a function of all the other digits; it can be computed to detect typos.
Digit Sums

If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9

Useful for typo detection!

$2 + 0 + 1 + 6 = 9$

Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits
The Problem Within the Problem

The sum of the digits of 6 is 6.

Likewise for any one-digit (non-negative) number (i.e., \(< 10\)).

The sum of the digits of 2016 is

\[
\text{Sum of these digits} + \text{This digit}
\]

That is, we can break the problem of summing the digits of 2016 into a smaller instance of the same problem, plus some extra stuff.

We call this recursion
Sum Digits Without a While Statement
def split(n):
 """Split positive n into all but its last digit and its last digit."""
 return n // 10, n % 10
Sum Digits Without a While Statement

```python
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10

def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
```

Sum Digits Without a While Statement

def split(n):
 """Split positive n into all but its last digit and its last digit."""
 return n // 10, n % 10

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
Sum Digits Without a While Statement

```python
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10

def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

```bash
  $ python
  >>> sum_digits(123)
  6
  >>> sum_digits(1020)
  3
  >>> sum_digits(0)
  0
```

Sum Digits Without a While Statement

def split(n):
 """Split positive n into all but its last digit and its last digit."""
 return n // 10, n % 10

def sum_digits(n):
 """Return the sum of the digits of positive integer n.""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
def sum_digits(n):
 """Return the sum of the digits of positive integer n."""

 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
The Anatomy of a Recursive Function

The def statement header is similar to other functions

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
The Anatomy of a Recursive Function

• The def statement header is similar to other functions

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
The Anatomy of a Recursive Function

• The def statement header is similar to other functions
• Conditional statements check for base cases

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

• The `def statement header` is similar to other functions
• Conditional statements check for `base cases`

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The **def statement header** is similar to other functions
- Conditional statements check for **base cases**
- Base cases are evaluated without recursive calls

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The \texttt{def} statement header is similar to other functions
- Conditional statements check for \texttt{base cases}
- Base cases are evaluated \texttt{without} recursive calls

```python
def sum_digits(n):
    
    """Return the sum of the digits of positive integer n.""

    if \texttt{n < 10}:
        \texttt{return n}

    else:
        all_but_last, last = split(n)

        \texttt{return sum_digits(all,but, last) + last}
```
The Anatomy of a Recursive Function

• The `def` statement header is similar to other functions
• Conditional statements check for **base cases**
• Base cases are evaluated **without recursive calls**
• Recursive cases are evaluated with **recursive calls**

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""

    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The **def statement header** is similar to other functions
- Conditional statements check for **base cases**
- Base cases are evaluated without **recursive calls**
- Recursive cases are evaluated with **recursive calls**

```python
def sum_digits(n):
    #"Return the sum of the digits of positive integer n."

    if n < 10:
        return n

    all_but_last, last = split(n)
    return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

• The **def statement header** is similar to other functions
• Conditional statements check for **base cases**
• Base cases are evaluated **without recursive calls**
• Recursive cases are evaluated **with recursive calls**

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

(Demo)
Recursion in Environment Diagrams
Recursion in Environment Diagrams

1 def fact(n):
2 if n == 0:
3 return 1
4 else:
5 return n * fact(n-1)
6
7 fact(3)
Recursion in Environment Diagrams

```python
1  def fact(n):
 2     if n == 0:
 3         return 1
 4     else:
 5         return n * fact(n-1)
 6
7  fact(3)
```

(Demo)
Recursion in Environment Diagrams

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

fact(3)
Recursion in Environment Diagrams

```python
1 def fact(n):
2     if n == 0:
3         return 1
4     else:
5         return n * fact(n-1)
6
7 fact(3)
```

- The same function `fact` is called multiple times

(Demo)

Global frame

- `fact`

f1: `fact [parent=Global]`

```
    n  3
```

f2: `fact [parent=Global]`

```
    n  2
```

f3: `fact [parent=Global]`

```
    n  1
```

f4: `fact [parent=Global]`

```
    n  0
    Return value  1
```
Recursion in Environment Diagrams

```python
1 def fact(n):
2     if n == 0:
3         return 1
4     else:
5         return n * fact(n-1)
6
7 fact(3)
```

The same function `fact` is called multiple times

(Demo)

```
Global frame

func fact(n) [parent=Global]

f1: fact [parent=Global]
    n 3

f2: fact [parent=Global]
    n 2

f3: fact [parent=Global]
    n 1

f4: fact [parent=Global]
    n 0
    Return value 1
```
Recursion in Environment Diagrams

```python
1 def fact(n):
2     if n == 0:
3         return 1
4     else:
5         return n * fact(n-1)
6
7 fact(3)
```

- The same function `fact` is called multiple times
- Different frames keep track of the different arguments in each call

(Demo)

```
Global frame

func fact(n) [parent=Global]

fact

f1: fact [parent=Global]
    n 3

f2: fact [parent=Global]
    n 2

f3: fact [parent=Global]
    n 1

f4: fact [parent=Global]
    n 0

Return value 1
```

Interactive Diagram
Recursion in Environment Diagrams

```python
1  def fact(n):
2      if n == 0:
3          return 1
4      else:
5          return n * fact(n-1)
6
7  fact(3)
```

- The same function `fact` is called multiple times.
- Different frames keep track of the different arguments in each call.
- What `n` evaluates to depends upon the current environment.

Interactive Diagram
Recursion in Environment Diagrams

The same function `fact` is called multiple times.
Different frames keep track of the different arguments in each call.
What `n` evaluates to depends upon the current environment.

```python
1  def fact(n):
2      if n == 0:
3          return 1
4      else:
5          return n * fact(n-1)
6
7  fact(3)
```

(Demo)

```
Global frame
-

f1: fact [parent=Global]  
   fact
   n 3

f2: fact [parent=Global]  
   n 2

f3: fact [parent=Global]  
   n 1

f4: fact [parent=Global]  
   n 0
   Return value 1
```
Recursion in Environment Diagrams

1. The same function `fact` is called multiple times.
2. Different frames keep track of the different arguments in each call.
3. What `n` evaluates to depends upon the current environment.
4. Each call to `fact` solves a simpler problem than the last: smaller `n`.

```
1 def fact(n):
2     if n == 0:
3         return 1
4     else:
5         return n * fact(n-1)
6
7 fact(3)
```

(Demo)

- Global frame

- `fact` frame
 - `n = 3`

- `f1` frame
 - `n = 2`

- `f2` frame
 - `n = 1`

- `f3` frame
 - `n = 0`

- Return value: 1

Interactive Diagram
Iteration vs Recursion
Iteration vs Recursion

Iteration is a special case of recursion
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```
Iteration vs Recursion

Iteration is a special case of recursion

4! = 4 · 3 · 2 · 1 = 24

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \times 3 \times 2 \times 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

Math:
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

\[n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Names:

\[n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Names: n, total, k, fact_iter

\[n! = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```

Using recursion:

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Names: \(n, \text{total}, k, \text{fact}_\text{iter} \)

\[n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]

Names: \(n, \text{fact} \)
Verifying Recursive Functions
The Recursive Leap of Faith
The Recursive Leap of Faith

Photo by Kevin Lee, Preikestolen, Norway
The Recursive Leap of Faith

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case

2. Treat `fact` as a functional abstraction!

Photo by Kevin Lee, Preikestolen, Norway
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case
2. Treat `fact` as a functional abstraction!
3. Assume that `fact(n-1)` is correct
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case

2. Treat `fact` as a functional abstraction!

3. Assume that `fact(n-1)` is correct

4. Verify that `fact(n)` is correct
Mutual Recursion
The Luhn Algorithm
The Luhn Algorithm

Used to verify credit card numbers
The Luhn Algorithm

Used to verify credit card numbers

The Luhn Algorithm

Used to verify credit card numbers

- **First:** From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., $7 \times 2 = 14$), then sum the digits of the products (e.g., 10: $1 + 0 = 1$, 14: $1 + 4 = 5$)
The Luhn Algorithm

Used to verify credit card numbers

• **First:** From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• **Second:** Take the sum of all the digits
The Luhn Algorithm

Used to verify credit card numbers

• **First:** From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• **Second:** Take the sum of all the digits

```
  1  3  8  7  4  3
```
The Luhn Algorithm

Used to verify credit card numbers

- **First**: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

- **Second**: Take the sum of all the digits

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
The Luhn Algorithm

Used to verify credit card numbers

• **First:** From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• **Second:** Take the sum of all the digits

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

= 30
The Luhn Algorithm

Used to verify credit card numbers

• **First:** From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• **Second:** Take the sum of all the digits

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

= 30

The Luhn sum of a valid credit card number is a multiple of 10
The Luhn Algorithm

- **First:** From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

- **Second:** Take the sum of all the digits

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

The Luhn sum of a valid credit card number is a multiple of 10 (Demo)
Recursion andIteration
Converting Recursion to Iteration
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.
def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

```
What's left to sum
```
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

A partial sum

What's left to sum
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last  # A partial sum
```

(Demo)
Converting Iteration to Recursion
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum
```
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum

def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum

def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```

Updates via assignment become...
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum

def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```

Updates via assignment become...

...arguments to a recursive call