Announcements

• Computer-Science Mentors (CSM) will be opening section signups tonight (Monday, Jan. 30) at 8pm. Details will appear on Piazza.

• Starting this Friday, I'll start a series of extra lectures for those who want them, 4:30-6:00PM in 306 Soda, covering various topics we don’t have room for. It is completely optional, and is not intended to help you with the course. Sign up for 1 unit of CS198 P/NP under CCN 34691 if interested. To get the unit, attendance required, and a few homeworks.

• HW 2 will be released today. Due next Monday.
Lecture #6: Recursion
Philosophy of Functions (I)

```
def sqrt(x):
    """Assuming X >= 0,
    returns approximation to square root of X."""
```

Syntactic specification (signature)

```
Precondition

Def sqrt(x):
    """Assuming X >= 0,
    returns approximation to square root of X."""

Semantic specification

- Specifies a **contract** between caller and function implementor.
- **Syntactic specification** gives syntax for calling (number of arguments).
- **Semantic specification** tells what it does:
  - **Preconditions** are requirements on the caller.
  - **Postconditions** are promises from the function’s implementor.
Philosophy of Functions (II)

- Ideally, the specification (syntactic and semantic) should suffice to use the function (i.e., without seeing the body).

- There is a separation of concerns here:
  - The caller (client) is concerned with providing values of $x$, $a$, $b$, and $c$ and using the result, but not how the result is computed.
  - The implementor is concerned with how the result is computed, but not where $x$, $a$, $b$, and $c$ come from or how the value is used.
  - From the client’s point of view, $\sqrt{}$ is an abstraction from the set of possible ways to compute this result.
  - We call this particular kind functional abstraction.

- Programming is largely about choosing abstractions that lead to clear, fast, and maintainable programs.
Philosophy of Functions (III)

• Each function should have exactly one, logically coherent and well defined job.
  - Intellectual manageability.
  - Ease of testing.

• Functions should be properly documented, either by having names (and parameter names) that are unambiguously understandable, or by having comments (docstrings in Python) that accurately describe them.
  - Should be able to understand code that calls a function without reading the body of the function.

• Don’t Repeat Yourself (DRY).
  - Simplifies revisions.
  - Isolates problems.
Philosophy of Functions (IV)

- Corollary of DRY: Make functions general
  - copy-paste leads to maintenance headaches
- Taking two (nearly) repeated sections of program code and turning them into calls to a common function is an example of *refactoring*.
- Keep names of functions and parameters meaningful:

<table>
<thead>
<tr>
<th>Instead of</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>turn_is_over</td>
</tr>
<tr>
<td>d</td>
<td>dice</td>
</tr>
<tr>
<td>helper</td>
<td>take_turn</td>
</tr>
</tbody>
</table>

(Bowling example From Kernighan&Plauger):

<table>
<thead>
<tr>
<th>Instead of</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>score</td>
</tr>
<tr>
<td>L</td>
<td>ball</td>
</tr>
<tr>
<td>f</td>
<td>frame</td>
</tr>
</tbody>
</table>
Simple Linear Recursions (Review)

- We've been dealing with recursive function (those that call themselves, directly or indirectly) for a while now.

- From Lecture #3:
  
  ```python
def sum_squares(N):
 """The sum of K**2 for K from 1 to N (inclusive).""
 if N < 1:
 return 0
 else:
 return N**2 + sum_squares(N - 1)
  ```

- This is a simple **linear recursion**, with one recursive call per function instantiation.

- Can imagine a call as an expansion:
  
  sum_squares(3) => 3**2 + sum_squares(2)
  => 3**2 + 2**2 + sum_squares(1)
  => 3**2 + 2**2 + 1**2 + sum_squares(0)
  => 3**2 + 2**2 + 1**2 + 0 => 14

- Each call in this expansion corresponds to an environment frame, linked to the global frame, as shown here.
Tail Recursion

• We’ve also seen a special kind of linear recursion that is strongly linked to iteration:

```python
def sum_squares(N):
 """The sum of K**2 for 1 <= K <= N.""
 accum = 0
 k = 1
 while k <= N:
 accum += k**2
 k += 1
 return accum

def sum_squares(N):
 """The sum of K**2 for 1 <= K <= N.""
 def part_sum(k, accum):
 if k <= N:
 return part_sum(k+1, accum + k**2)
 else:
 return accum
 part_sum(1, 0)
```

• The right version is a *tail-recursive function*: the recursive call is either the returned value or very last action performed.

• The environment frames correspond to the iterations of the loop on the left, as shown here.
Recursive Thinking

- So far in this lecture, I’ve shown recursive functions by tracing or repeated expansion of their bodies.
- But when you call a function from the Python library, you don’t look at its implementation, just its documentation (“the contract”).
- **Recursive thinking** is the extension of this same discipline to functions *as you are defining them*.
- When implementing `sum_squares`, we reason as follows:
  - **Base case**: We know the answer is 0 if there is nothing to sum \((N < 1)\).
  - Otherwise, we observe that the answer is \(N^2\) plus the sum of the positive integers from 1 to \(N - 1\).
  - But there is a function (`sum_squares`) that can compute \(1 + \ldots + N - 1\) (its comment says so).
  - So when \(N \geq 1\), we should return \(N^2 + \text{sum\_squares}(N - 1)\).
- This “recursive leap of faith” works as long as we can guarantee we’ll hit the base case.
Recursive Thinking in Mathematics

• To prevent an infinite recursion, must use this technique only when
  - The recursive cases are “smaller” than the input case, and
  - There is a minimum “size” to the data, and
  - All chains of progressively smaller cases reach a minimum in a finite number of steps.

• We say that such “smaller than” relations are well founded.

• We have

  **Theorem (Noetherian Induction):** Suppose $\prec$ is a well-founded relation and $P$ is some property (predicate) such that whenever $P(y)$ is true for all $y \prec x$, then $P(x)$ is also true. Then $P(x)$ is true for all $x$.


• More general than the “line of dominos” induction you may have encountered: If true for a base case $b$, and if true for $k$ when true for $k - 1$, then true for all $k > b$. 

def find_first(start, pred):
    """Find the smallest k >= START such that PRED(START)."""
    ?
Subproblems and Self-Similarity

- Recursive routines arise when solving a problem naturally involves solving smaller instances of the same problem.

- A classic example where the subproblems are visible is Sierpinski’s Triangle (aka bit Sierpinski’s Gasket).

- This triangle may be formed by repeatedly replacing a figure, initially a solid triangle, with three quarter-sized images of itself (1/2 size in each dimension), arranged in a triangle:

  ![Triangle Images]

- Or we can think creating a “triangle of order $N$ and size $S$” by drawing either
  - a solid triangle with side $S$ if $N = 0$, or
  - three triangles of size $S/2$ and order $N - 1$ arranged in a triangle.
The Gasket in Python

• We can describe this as a recursive Python program that produces Postscript output.

\[
\text{sin60} = \frac{\sqrt{3}}{2}
\]

```python
def make_gasket(x, y, s, n, output):
 """Write Postscript code for a Sierpinski’s gasket of order N with lower-left corner at (X, Y) and side S on OUTPUT.""
 if n == 0:
 draw_solid_triangle(x, y, s, output)
 else:
 make_gasket(x, y, s/2, n - 1, output)
 make_gasket(x + s/2, y, s/2, n - 1, output)
 make_gasket(x + s/4, y + sin60*s/2, s/2, n - 1, output)

def draw_solid_triangle(x, y, s, output):
 "Draw a solid triangle lower-left corner at (X, Y) and side S."
 print("{x} {y} moveto " # Go x, y
 "{s} 0 rlineto " # Horizontal move by s units
 "-{mid} {alt} rlineto " # Move up and to left
 "closepath fill" # Close path and fill with black
 .format(x=x, y=y, s=s, mid=s/2, alt=s*sin60), file=output)
```
Aside: Using the Functions

- Just to complete the picture, we can use `make_gasket` to create a standalone Postscript file on a given file.

```python
def draw_gasket(n, output=sys.stdout):
 print("%!", file=output)
 make_gasket(100, 100, 400, 8, output)
 print("showpage", file=output)
 output.flush() # Make sure all output so far is written
```

- And just for fun, here’s some Python magic to display triangles automatically (uses `gs`, the Ghostscript interpreter for Postscript).

```python
from subprocess import Popen, PIPE, DEVNULL

def make_displayer():
 """Create a Ghostscript process that displays its input (sent in through .stdin)."""
 return Popen("gs", stdin=PIPE, stdout=DEVNULL)

>>> d = make_displayer()
>>> draw_gasket(5, d.stdin)
>>> draw_gasket(10, d.stdin)
```
Aside: The Gasket in Pure Postscript

- One can also perform the logic to generate figures in Postscript directly, which is itself a full-fledged programming language:

```postscript
%!

/sin60 3 sqrt 2 div def

/make_gasket {
 dup 0 eq {
 3 index 3 index moveto 1 index 0 rlineto 0 2 index rlineto
 1 index neg 0 rlineto closepath fill
 }
 } {
 3 index 3 index 3 index 0.5 mul 3 index 1 sub make_gasket
 3 index 2 index 0.5 mul add 3 index 3 index 0.5 mul
 3 index 1 sub make_gasket
 3 index 2 index 0.25 mul add 3 index 3 index 0.5 mul add
 3 index 0.5 mul 3 index 1 sub make_gasket
 } ifelse
 pop pop pop pop
} def

100 100 400 8 make_gasket showpage
```