Function Examples
Announcements
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person
• Your score is the number of entries
 against which you win more than
 50.00001% of the time
• Strategies are time-limited
• All strategies must be deterministic,
 pure functions of the players' scores
• Winning entries will receive a paltry
 amount of extra credit
• The real prize: honor and glory
• See website for detailed rules

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhengao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

cs61a.org/proj/hog_contest
Hog Contest Winners

Spring 2015 Winners
Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

Fall 2015 Winners
Micah Carroll & Vasilis Oikonomou
Matthew Wu
Anthony Yeung and Alexander Dai

Spring 2016 Winners
Michael McDonald and Tianrui Chen
Andrei Kassiantchouk
Benjamin Krieges

Fall 2016 Winners
Cindy Jin and Sunjoon Lee
Anny Patino and Christian Vasquez
Asana Choudhury and Jenna Wen
Michelle Lee and Nicholas Chew

Fall 2017 Winners
Alex Yu and Tanmay Khattar
James Li
Justin Yokota

Spring 2018 Winners
Eric James Michaud
Ziyu Dong
Xuhui Zhou

Fall 2018 Winners
Rahul Arya
Jonathan Bodine
Sumer Kohli and Neelesh Ramachandran

Fall 2019 Winners
Jet Situ and Lucas Schaberg
Anthony Han and Hongyi Huang
Arthur Pan and Qingyuan Liu

Spring 2020 Winners
Andy Dong
Theodor Sion and Anish Kar
Shaun Diem–Lane

Fall 2020 Winners
Describing Functions
def likes(n):
 """Returns whether George Boole likes the non-negative integer n."""
 ...

def mystery1(n):
 likes = is_prime
 n = 8
 k = 1
 while k < n:
 if likes(n):
 print(k)
 k = k + 2

 One approach:
 1. Read the code
 2. Read the description options
 3. Consider an example

 all odd numbers but only if George likes n

 mystery1 prints _____ less than n _____.

 mystery1 prints all odd numbers less than n that George likes.
def likes(n):
 """Returns whether George Boole likes the non-negative integer n."""
 ...

def mystery2(n):
 i, j, k = 0, None, None
 while i < n:
 if likes(i):
 if j != None and (k == None or i - j < k):
 k = i - j
 j = i
 i = i + 1
 return k

One approach:
1. Read the code
2. Read the description options
3. Consider an example

the smallest difference between
two positive integers below n
that George likes

There are no two
such integers

mystery 2 returns _____ or returns None if _____.
Generating Environment Diagram
A Day at the Beach

```python
def flip(flop):
    if _____:
        return None
    true for flop == 3
    flip = lambda flip: 3
    return flip

def flop(flip):
    return flop

flip, flop = flop, flip

flip(____)(3)
```

not true for flop == 1

lambda flip: 3

true for flop == 3

flop>2

return None
Implementing Functions
Implementing a Function

def remove(n, digit):
 """Return all digits of non-negative N that are not DIGIT, for some non-negative DIGIT less than 10."
 kept, digits = 0, 0
 while n > 0:
 n, last = n // 10, n % 10
 if last != digit:
 kept = kept + last
 digits = digits + 1
 return kept ** digits

>>> remove(231, 3) 1 1
21
>>> remove(243132, 2) 4313

kept, digits = 0, 0

while n > 0:
 n, last = n // 10, n % 10
 if last != digit:
 kept = kept + last
 digits = digits + 1
return kept ** digits

Read the description

Verify the examples & pick a simple one

Read the template

Implement without the template, then change your implementation to match the template.

OR

If the template is helpful, use it.

Annotate names with values from your chosen example

Write code to compute the result

Did you really return the right thing?

Check your solution with the other examples
Implementing a Function

```python
def remove(n, digit):
    """Return all digits of non-negative N that are not DIGIT, for some non-negative DIGIT less than 10."

    >>> remove(231, 3)
    21
    >>> remove(243132, 2)
    4313

    kept, digits = 0, 0
    while n > 0:
        n, last = n // 10, n % 10
        if last != digit:
            kept = kept/10 + last
            digits = digits + 1
    return round(kept * 10 ** (digits-1))
```

Read the description
Read the template

Verify the examples & pick a simple one

Implement without the template, then change your implementation to match the template. **OR**
If the template is helpful, use it.

Annotate names with values from your chosen example

Write code to compute the result

Did you really return the right thing?

Check your solution with the other examples
Decorators
Function Decorators

(Demo)

```python
@trace1
def triple(x):
    return 3 * x
```

is identical to

```python
def triple(x):
    return 3 * x
triple = trace1(triple)
```

Why not just use this?