Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of fib evolves into a tree structure
Repetition in Tree-Recursive Computation

This process is highly repetitive; `fib` is called on the same argument multiple times

(We will speed up this computation dramatically in a few weeks by remembering results)
```python
def path(m, n):
    """Return the number of paths from one corner of an M by N grid to the opposite corner."

    >>> path(2, 2)
    2
    >>> path(5, 7)
    210
    >>> path(117, 8)
    1
    >>> path(0, 157)
    1

    if m == 1 or n == 1:
        return 1
    return path(m-1, n) + path(m, n-1)
```

Total # of ways to get to \((M, N)\) = Total # of ways to get to \((M-1, N)\) + Total # of ways to get to \((M, N-1)\)

- Took 1 step towards M
- Took 1 step towards N
Total # of ways to get to \((M, N)\)

\[= \text{Total # of ways to get to } (M-1, N) + \]

\[\text{Total # of ways to get to } (M, N-1)\]
def knap(n, k):
 if n == 0:
 return k == 0
 with_last = knap(n // 10, k - n % 10)
 without_last = knap(n // 10, k)
 return with_last or without_last
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- $2 + 4 = 6$
- $1 + 1 + 4 = 6$
- $3 + 3 = 6$
- $1 + 2 + 3 = 6$
- $1 + 1 + 1 + 3 = 6$
- $2 + 2 + 2 = 6$
- $1 + 1 + 2 + 2 = 6$
- $1 + 1 + 1 + 1 + 2 = 6$
- $1 + 1 + 1 + 1 + 1 + 1 = 6$
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)
```python
def all_nums(k):
    def h(k, prefix):
        if k == 0:
            print(prefix)
            return
        h(k-1, prefix*10)
        h(k-1, prefix*10+1)
    h(k, 0)
```