Sequences and Containers

Announcements

Tree Recursion Review

Advice: Watch The Count Partitions Video Again!!!

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

*Recursive decomposition: finding @ prgprpgp—.
simpler instances of the problem. o N -y -

-Explore two possibilities: . ------- . ; @ . .
-Use at least one 4 i . ee | . d .
-Don't use any 4 *® @e . i .

-Solve two simpler problems: . . ‘., — ® . .
- peuntipant2fions(2, 4) -® - - .
-pauhitpant@iisns(6, 3) d : : .- : : :

*Tree recursion often involves om - - -) .

exploring different choices.

https://www.youtube.com/watch?v=DvgT4dnSMVM&1ist=PL6BsSET-8jgYUUWPap4etQjZVWlWUeFxn@&index=4

https://www.youtube.com/watch?v=DvgT4dnSMVM

Tree Recursion Exam Problem

Spring 2023 Midterm 2 Question 5

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement count_park, which returns the number of ways that vehicles can be parked 1in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

def count _park(n):
"""Count the ways to park cars and motorcycles in n adjacent spots.

>>> count_park(1l) # '.' or 'S’
2
>>> count_park(2) # '..', '.%', '%.', '%%', or '<>!
5
>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
29 —¢ — —
ininii
1f n < 0:
return 0
elif n ==
return 1
else:

return count_park(n-2) + count_park(n-1) + count_park(n-1)

Lists

['Demo "]

Ranges

The Range Type

A range 1s a sequence of consecutive integers.*

") _51 _41 _31 _21 _11 01 11 21 31 41 51

s

range(-2, 2)

Length: ending value - starting value
(Demo)

Element selection: starting value + index

>>> list(range(-2, 2))<[List constructor j
-2, -1, 0, 1]

>>> list(range(4))<{: Range with a @ starting value :J
0, 1, 2, 3]

* Ranges can actually represent more general 1integer sequences.

List Comprehensions

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

Example: Two Lists

Given these two related lists of the same length:
Xs = range(-10, 11)
ys = [xkxx — 2%x + 1 for x in xs]

Write a list comprehension that evaluates to:

A list of all the x values (from xs) for which the corresponding y (from ys) is below 10.

>>> list(xs)

>>> yS i 5

(121, 100, 81, 64, 49, 36, 25, 16,i 9, 4, 1, 0, 1, 4, 9,16, 25, 36, 49, 64, 81]
>>> xs_where_y is below 10 e ;

[-2, -1, o, 1, 2, 3, 4]

Example: Promoted

First in Line

Implement promoted, which takes a sequence s and a one-argument function f. It returns a
list with the same elements as s, but with all elements e for which f(e) 1s a true value
ordered first. Among those placed first and those placed after, the order stays the same.

def promoted(s, f):
"""Return a list with the same elements as s, but with all
elements e for which f(e) 1s a true value placed first.

>>> promoted(range(1l0), odd) # odds in front
[1I 3’ 5’ 7’ 9’ Ol 2’ 4’ 6’ 8]

return L€ for e in s if f(e)] + [e for e in s if not f(e)]

Lists, Slices, & Recursion

A List Is a First Element and the Rest of the List

For any list s, the expression s[l:] is called a slice from index 1 to the end (or 1 onward)
e The value of s[1:] is a list whose length is one less than the length of s
e It contains all of the elements of s except s[0]

e Slicing s doesn't affect s

>>> s = [2, 3, 6, 4]
>>> s[1:]

[3, 6, 4]

>>2> S

[2, 3, 6, 4]

In a list s, the first element 1s s[0] and the rest of the elements are s[l:].

Recursion Example: Sum

Implement sum_list, which takes a list of numbers s and returns their sum. If a list is
empty, the sum of 1ts elements 1s 0.

def sum list(s):
"HHSum the elements of list s.

>>> sum([2, 4, 1, 3])

10
if len(s) == 0:
return 0
Recursive idea: The sum of the
else: elements of a list is the result of
- . adding the first element to the sum
return sle + sum_list(sii:]) of the rest of the elements

Recursion Example: Large Sums

def large(s, n):
"HHReturn the sublist of positive numbers s with the
largest sum that 1s less than or equal to n.

Definition: A sublist of a
list s 1s a list with some
(or none or all) of the

elements of s. >>> large([4, 2, 5, 6, 7], 3)
Implement large, which takes 2]
a list of positive numbers s >[Z> éf]ﬂrge([4, 2, 5, 6, 71, 8)
and a non-negative number n. >>> large([4, 2, 5, 6, 7], 19)

(4, 2, 6, 7]
It returns the sublist of s >[;> })arge(%' 2, 5, 6, 71, 20)
with the largest sum that 1is s
less than or equal to n. if s == []:

return []

elif s[0] > n:

You may call sum_list, which return large(s[1l:], n)

takes a list and returns the

. else:
sum of 1ts elements. first = s[0]
with s@ = [first] + large(s[1:], n - first)
without_s@ = large(s[1:]1, n)

if sum_list(with _s@) > sum list(without s@):
return with_s@0

else:
return without s0

Building Lists Recursively

Add Consecutive

https://csb6la.org/exam/su24/midterm/6la-su24—-midterm. pdf#page=11

More Tree Recursion Practice

Tree Recursion Exam Problem 2

https://csb6la.org/exam/su22/midterm/6la-su22-midterm. pdf#page=10

