
Sequences and Containers

Announcements

Tree Recursion Review

Advice: Watch The Count Partitions Video Again!!!

https://www.youtube.com/watch?v=DvgT4dnSMVM&list=PL6BsET-8jgYUUWPap4etQjZVWlWUeFxn0&index=4

https://www.youtube.com/watch?v=DvgT4dnSMVM

Tree Recursion Exam Problem

Spring 2023 Midterm 2 Question 5

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement count_park, which returns the number of ways that vehicles can be parked in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

6

def count_park(n):

 """Count the ways to park cars and motorcycles in n adjacent spots.

 >>> count_park(1) # '.' or '%'

 2

 >>> count_park(2) # '..', '.%', '%.', '%%', or '<>'

 5

 >>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'

 29

 """

 if n < 0:

 return ____________

 elif n == 0:

 return ____________

 else:

 return __
count_park(n-2) + count_park(n-1) + count_park(n-1)

0

1

Lists

['Demo']

Ranges

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))

[-2, -1, 0, 1]

>>> list(range(4))

[0, 1, 2, 3]

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

List constructor

Range with a 0 starting value

(Demo)

9

List Comprehensions

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

11

Example: Two Lists

Given these two related lists of the same length:

xs = range(-10, 11)

ys = [x*x - 2*x + 1 for x in xs]

Write a list comprehension that evaluates to:

12

A list of all the x values (from xs) for which the corresponding y (from ys) is below 10.

>>> list(xs)

[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> ys

[121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> xs_where_y_is_below_10

[-2, -1, 0, 1, 2, 3, 4]

Example: Promoted

First in Line

Implement promoted, which takes a sequence s and a one-argument function f. It returns a
list with the same elements as s, but with all elements e for which f(e) is a true value
ordered first. Among those placed first and those placed after, the order stays the same.

14

def promoted(s, f):
 """Return a list with the same elements as s, but with all
 elements e for which f(e) is a true value placed first.

 >>> promoted(range(10), odd) # odds in front
 [1, 3, 5, 7, 9, 0, 2, 4, 6, 8]
 """
 return ___[e for e in s if f(e)] + [e for e in s if not f(e)]

Lists, Slices, & Recursion

A List is a First Element and the Rest of the List

For any list s, the expression s[1:] is called a slice from index 1 to the end (or 1 onward)

• The value of s[1:] is a list whose length is one less than the length of s

• It contains all of the elements of s except s[0]

• Slicing s doesn't affect s

16

>>> s = [2, 3, 6, 4]

>>> s[1:]

[3, 6, 4]

>>> s

[2, 3, 6, 4]

In a list s, the first element is s[0] and the rest of the elements are s[1:].

Recursion Example: Sum
Implement sum_list, which takes a list of numbers s and returns their sum. If a list is
empty, the sum of its elements is 0.

17

def sum_list(s):

 """Sum the elements of list s.

 >>> sum([2, 4, 1, 3])

 10

 """

 if len(s) == 0:

 return 0

 else:

 return _______ + _________________s[0] sum_list(s[1:])

Recursive idea: The sum of the
elements of a list is the result of
adding the first element to the sum
of the rest of the elements

Recursion Example: Large Sums
Definition: A sublist of a
list s is a list with some
(or none or all) of the
elements of s.

Implement large, which takes
a list of positive numbers s
and a non-negative number n.

 
It returns the sublist of s
with the largest sum that is
less than or equal to n. 

You may call sum_list, which
takes a list and returns the
sum of its elements.

18

def large(s, n):

 """Return the sublist of positive numbers s with the

 largest sum that is less than or equal to n.

 >>> large([4, 2, 5, 6, 7], 3)

 [2]

 >>> large([4, 2, 5, 6, 7], 8)

 [2, 6]

 >>> large([4, 2, 5, 6, 7], 19)

 [4, 2, 6, 7]

 >>> large([4, 2, 5, 6, 7], 20)

 [2, 5, 6, 7]

 """

 if s == []:

 return []

 elif s[0] > n:

 return large(s[1:], n)

 else:

 first = s[0]

 with_s0 = _______________________________________

 without_s0 = ____________________________________

 if sum_list(with_s0) > sum_list(without_s0):

 return with_s0

 else:

 return without_s0

[first] + large(s[1:], n - first)
large(s[1:], n)

Building Lists Recursively

https://cs61a.org/exam/su24/midterm/61a-su24-midterm.pdf#page=11

Add Consecutive

More Tree Recursion Practice

https://cs61a.org/exam/su22/midterm/61a-su22-midterm.pdf#page=10

Tree Recursion Exam Problem 2

