Data Abstraction

Announcements

Lists, Slices, & Recursion

A List Is a First Element and the Rest of the List

For any list s, the expression s[l:] is called a slice from index 1 to the end (or 1 onward)
e The value of s[1:] is a list whose length is one less than the length of s
e It contains all of the elements of s except s[0]

e Slicing s doesn't affect s

>>> s = [2, 3, 6, 4]
>>> s[1:]

[3, 6, 4]

>>2> S

[2, 3, 6, 4]

In a list s, the first element 1s s[0] and the rest of the elements are s[l:].

Recursion Example: Sum

Implement sum_list, which takes a list of numbers s and returns their sum. If a list is
empty, the sum of 1ts elements 1s 0.

def sum list(s):
"HHSum the elements of list s.

>>> sum([2, 4, 1, 3])

10
if len(s) == 0:
return 0
Recursive idea: The sum of the
else: elements of a list is the result of
- . adding the first element to the sum
return sle + sum_list(sii:]) of the rest of the elements

Dictionaries

1'Dem': 0}

Dictionary Comprehensions

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

Example: Multiples

Implement multiples, which takes two lists of positive numbers s and factors. It returns a
dictionary 1in which each element of factors 1s a key, and the value for each key 1s a list
of the elements of s that are mulitples of the key.

def multiples(s, factors):
"""Create a dictionary where each factor 1s a key and each value
1s the elements of s that are multiples of the Kkey.

>>> multiples([3, 4, 5, 6, 7, 81, [2, 31)
{2: [4, 6, 8], 3: [3, 6]}
>>> multiples(I[1, 2, 3, 4, 51, [2, 5, 81)
12: [2, 4], 5: [5], 8: []}

return {x: [y for y in S if Y % X == 071 for x in Tactorsy

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

How data are represented (as some underlying list, dictionary, etc.)

How data are manipulated (as whole values with named parts)

E.g., refer to the parts of a line (affine function) called f:
-slope(f) instead of f[0] or f['slope'l
-y _intercept(f) instead of f[1l] or fl'y_ intercept']

Why? Code becomes easier to read & revise.

(Demo)

Break: 5 minutes

Trees

Tree Abstraction

or Root Node

(wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree 1s called a node
Each branch 1s a tree Each node has a label that can be any value
A tree with zero branches 1s called a leaf One node can be the parent/child of another

A tree starts at the root The top node 1s the root node

Implementing the Tree Abstraction

def tree(label, branches=[]):
return [label] + branches

def label(tree):
return treel[0]

def branches(tree):
return tree[1:]

« A tree has a root label
and a list of branches

« Each branch 1s a tree

3
1 2
/ N
1 1

>>> tree(3, [tree(1l),
tree(2, [tree(1),

- tree(1)1)1)

13, 111, [2, [1], [1]1]]

Implementing the Tree Abstraction

--

for branch 1n branches:

def tree(label, branches=[]):
assert 1is tree(branch)‘<[

Verifies the
tree definitiong}

--

.

—

def label(tree): Creates a li

return treel0]

_

St

from a sequence
of branches

J

def branches(tree):

return treel1:] Verifies that

tree 1s bound
to a list

\

J

def is tree(tree) \\J

return False
for branch in branches(tree):
if not is _tree(branch):
return False
return True

« A tree has a root label
and a list of branches

« Each branch 1s a tree

3
1 2
/ AN
1 1
>>> tree(3, [tree(1l),
tree(2, [tree(1),

. tree(1)]1)])
13, (1], [2, [1], [1]]]

def is leaf(tree):
return not branches(tree)

Using the Tree Abstraction

For a tree t, you can only: An example tree t:

eGet the label for the root of the tree: label(t)

eGet the list of branches for the tree: branches(t)

*Get the branch at index i, which 1is a tree: branches(t) [0] [! ‘a t

.Determlne Whether the tree lS a 'l_eaf: lS_-l.eaf(t) ..

eTreat t as a value: return t, f(t), [t], s = t, etc.

(Demo)

Tree Processing

Tree Processing Uses Recursion

Processing a leaf 1s often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count leaves(t):
""Count the leaves of a tree."™"
if is leaf(t):
return 1

else:

branch_counts = [count _leaves(b) for b in branches(t)]

return sum(branch_counts)

Writing Recursive Functions

Make sure you can answer the following before you start writing code:
- What recursive calls will you make?

- What type of values do they return?

- What do the possible return values mean?

- How can you use those return values to complete your implementation?

Example: Largest Label

Processing a leaf 1s often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def largest_label(t):
"HHReturn the largest label in tree t."""

if is leaf(t):
return label(t)

else:

return Max ([largest_label(b) f,r b in branches(t)] + L[label(t)]

