
Data Abstraction

Announcements

Lists, Slices, & Recursion

A List is a First Element and the Rest of the List

For any list s, the expression s[1:] is called a slice from index 1 to the end (or 1 onward)

• The value of s[1:] is a list whose length is one less than the length of s

• It contains all of the elements of s except s[0]

• Slicing s doesn't affect s

4

>>> s = [2, 3, 6, 4]
>>> s[1:]
[3, 6, 4]
>>> s
[2, 3, 6, 4]

In a list s, the first element is s[0] and the rest of the elements are s[1:].

Recursion Example: Sum
Implement sum_list, which takes a list of numbers s and returns their sum. If a list is
empty, the sum of its elements is 0.

5

def sum_list(s):
 """Sum the elements of list s.

 >>> sum([2, 4, 1, 3])
 10
 """

 if len(s) == 0:

 return 0

 else:

 return _______ + _________________s[0] sum_list(s[1:])

Recursive idea: The sum of the
elements of a list is the result of
adding the first element to the sum
of the rest of the elements

Dictionaries

{'Dem': 0}

Dictionary Comprehensions

7

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Example: Multiples

Implement multiples, which takes two lists of positive numbers s and factors. It returns a
dictionary in which each element of factors is a key, and the value for each key is a list
of the elements of s that are mulitples of the key.

8

def multiples(s, factors):
 """Create a dictionary where each factor is a key and each value
 is the elements of s that are multiples of the key.

 >>> multiples([3, 4, 5, 6, 7, 8], [2, 3])
 {2: [4, 6, 8], 3: [3, 6]}
 >>> multiples([1, 2, 3, 4, 5], [2, 5, 8])
 {2: [2, 4], 5: [5], 8: []}
 """

 return {x: [y for y in ________ if ___________] for x in ________}factorsy % x == 0s

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

• How data are represented (as some underlying list, dictionary, etc.)

• How data are manipulated (as whole values with named parts)

10

E.g., refer to the parts of a line (affine function) called f:

• slope(f) instead of f[0] or f['slope']

• y_intercept(f) instead of f[1] or f['y_intercept']

Why? Code becomes easier to read & revise.

(Demo)

Break: 5 minutes

Trees

Tree Abstraction

13

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

Path

 or Root Node

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

14

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

Implementing the Tree Abstraction

15

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Using the Tree Abstraction

For a tree t, you can only:

•Get the label for the root of the tree: label(t)

•Get the list of branches for the tree: branches(t)

•Get the branch at index i, which is a tree: branches(t)[0]

•Determine whether the tree is a leaf: is_leaf(t)

•Treat t as a value: return t, f(t), [t], s = t, etc.

16

(Demo)

2

1 1

0 1

An example tree t:

[],

Tree Processing

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

18

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

 return sum(branch_counts)

Writing Recursive Functions

Make sure you can answer the following before you start writing code:

• What recursive calls will you make?

• What type of values do they return?

• What do the possible return values mean?

• How can you use those return values to complete your implementation?

19

Example: Largest Label

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

20

def largest_label(t):

 """Return the largest label in tree t."""

 if is_leaf(t):

 return __________

 else:

 return ____([_________________ for b in branches(t)] + ___________)

label(t)

max [label(t)]largest_label(b)

