Tree Recursion
Class outline:

- Order of recursive calls
- Tree recursion
- Counting partitions
Order of recursive calls
def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

cascade(123)
def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

cascade(123)

What would this display?

Answer the poll: lecturepoll.pamelafox2.repl.co
def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

cascade(123)

View in PythonTutor

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Global frame
 cascade → func cascade(n)[parent=Global]

f1: cascade[parent=Global]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>123</td>
</tr>
<tr>
<td>Return value</td>
<td>None</td>
</tr>
</tbody>
</table>
f2: cascade[parent=Global]
 n 12
 Return value None

f3: cascade[parent=Global]
 n 1
 Return value None

Print output:

```
123
12
1
12
123
```
Two definitions of cascade

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then the shorter one is usually better
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure
Inverse cascade

How can we output this cascade instead?

1
12
123
12
1
def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

grow = lambda n: f_then_g(
shrink = lambda n: f_then_g(

View in PythonTutor
def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

grow = lambda n: f_then_g(
shrink = lambda n: f_then_g(

View in PythonTutor
def inverse_cascade(n):
grow(n)
print(n)
shrink(n)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(

View in PythonTutor
def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

View in PythonTutor
Tree recursion
Tree Recursion

Tree-shaped processes arise whenever a recursive function makes more than one recursive call.

Sierpinski curve
Recursive Virahanka-Fibonacci

The nth number is defined as:

\[
\text{virfib}(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
\text{virfib}(n - 1) + \text{virfib}(n - 2) & \text{otherwise}
\end{cases}
\]

```python
def virfib(n):
    """Compute the nth Virahanka-Fibonacci number, for N >= 1."
    >>> virfib(2)
    1
    >>> virfib(6)
    8
    """
```
Recursive Virahanka-Fibonacci

The nth number is defined as:

\[
\text{virfib}(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
\text{virfib}(n - 1) + \text{virfib}(n - 2) & \text{otherwise}
\end{cases}
\]

def virfib(n):
 """Compute the nth Virahanka-Fibonacci number, for N >= 1."
 >>> virfib(2)
 1
 >>> virfib(6)
 8
 """
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return virfib(n-2) + virfib(n-1)
A tree-recursive process
Redundant computations

The function is called on the same number multiple times. 😞
(We will speed up this computation dramatically in a few weeks by
Counting partitions
Counting partitions problem

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting partitions approach

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

`count_partitions(6, 4)`

Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:
Counting partitions approach

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

$count_partitions(6, 4)$

Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

Use at least one 4
Counting partitions approach

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4
- Don't use any 4

\[
\begin{array}{c}
\text{Use at least one 4} \\
\text{Don't use any 4}
\end{array}
\]
Counting partitions approach

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

`count_partitions(6, 4)`

Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- **Use at least one 4**
- **Don't use any 4**

Tree recursion often involves exploring different choices.
Counting partitions approach

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

Solve two simpler problems:

\[
\text{count_partitions}(2, 4)
\]

\[
\text{count_partitions}(6, 3)
\]
Counting partitions approach

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

$\text{count_partitions}(6, 4)$

Solve two simpler problems:

$\text{count_partitions}(2, 4)$

$\text{count_partitions}(n-m, m)$

$\text{count_partitions}(6, 3)$
Counting partitions approach

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

count_partitions(6, 4)

Solve two simpler problems:

count_partitions(2, 4)
count_partitions(n-m, m)
count_partitions(6, 3)
count_partitions(n, m-1)
Counting partitions code

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

Solve two simpler problems:

with parts of size \(m \):

\[
\text{count_partitions}(2, 4) \\
\text{count_partitions}(n-m, m)
\]

without parts of size \(m \):

\[
\text{count_partitions}(6, 3) \\
\text{count_partitions}(n, m-1)
\]

```python
def count_partitions(n, m):
    """
    >>> count_partitions(6, 4)
```
Counting partitions code

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

Solve two simpler problems:

with parts of size \(m \):

\[
\text{count_partitions}(2, 4) \\
\text{count_partitions}(n-m, m)
\]

without parts of size \(m \):

\[
\text{count_partitions}(6, 3) \\
\text{count_partitions}(n, m-1)
\]

def count_partitions(n, m):

 >>> count_partitions(6, 4)
else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
Counting partitions code

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

```python
def count_partitions(n, m):
    """
    >>> count_partitions(6, 4)
    Solve two simpler problems:
    with parts of size \( m \):
    count_partitions(2, 4)
count_partitions(n-m, m)
    without parts of size \( m \):
    count_partitions(6, 3)
count_partitions(n, m-1)
```
if n == 0:
 return 1
elif n < 0:
 return 0
elif m == 0:
 return 0
else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
Counting partitions process
count_partitions(4,2)
 ret: 3

 count_partitions(2,2)
 ret: 2
 count_partitions(0,2)
 ret: 1
 count_partitions(1,1)
 ret: 1
 count_partitions(0,1)
 ret: 1
 count_partitions(0,1)
 ret: 1

 count_partitions(4,1)
 ret: 1
 count_partitions(3,1)
 ret: 1
 count_partitions(3,0)
 ret: 0
 count_partitions(2,0)
 ret: 1
 count_partitions(0,1)
 ret: 1

 count_partitions(4,0)
 ret: 0
 count_partitions(2,1)
 ret: 1
 count_partitions(2,0)
 ret: 0
 count_partitions(1,0)
 ret: 0