Tree Recursion

Announcements

Recursive Factorial

Recursive Factorial

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

factorial(5)

factorial (0) # base case
n! = 1

factorial (1) # recursive case
n! = n * (n-1)!

Order of Recursive Calls
The Cascade Function

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Two Definitions of Cascade

- If two implementations are equally clear, then shorter is usually better.
- In this case, the longer implementation is more clear (at least to me).
- When learning to write recursive functions, put the base cases first.
- Both are recursive functions, even though only the first has typical structure.

Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

This process is highly repetitive; `fib` is called on the same argument multiple times.
(We will speed up this computation dramatically in a few weeks by remembering results.)
Example: Towers of Hanoi

```python
def move_disk(disk_number, from_peg, to_peg):
    print(f"Move disk {disk_number} from peg {from_peg} to peg {to_peg}.")
def solve_hanoi(n, start_peg, end_peg):
    if n == 1:
        move_disk(n, start_peg, end_peg)
    else:
        spare_peg = 6 - start_peg - end_peg
        solve_hanoi(n - 1, start_peg, spare_peg)
        move_disk(n, start_peg, end_peg)
        solve_hanoi(n - 1, spare_peg, end_peg)
```

Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
1 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 4 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]

Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)