Tree Recursion
Announcements
Recursive Factorial
factorial (!)

if n == 0
 n! = 1

if n > 0
 n! = n \times (n-1) \times (n-2) \times \ldots \times 1
def factorial(n):
 fact = 1
 i = 1
 while i <= n:
 fact *= i
 i += 1
 return fact

factorial(5)

1 = 1*1
2 = 2*1!
6 = 3*2!
24 = 4*3!
120 = 5*4!
factorial (!)

if n == 0
 n! = 1

base case

if n > 0
 n! = n \times (n-1)!

recursive case
def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

factorial(3)
Order of Recursive Calls
The Cascade Function

(Demo)
The Cascade Function

```python
1  def cascade(n):
2      if n < 10:
3          print(n)
4      else:
5          print(n)
6          cascade(n//10)
7          print(n)
8  cascade(123)
```

(Demo)

Global frame

```
cascade
```

f1: cascade [parent=Global]

```
n  123
```

f2: cascade [parent=Global]

```
n  12
Return value  None
```

f3: cascade [parent=Global]

```
n  1
Return value  None
```
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

Program output:

```
123
12
1
12
```
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

(Demo)

- Each cascade frame is from a different call to cascade.

Program output:

123
12
1
12
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

(Demo)

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.

Program output:

```
123
12
1
12
```
The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)

cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

• Each cascade frame is from a different call to cascade.
• Until the Return value appears, that call has not completed.
• Any statement can appear before or after the recursive call.

Program output:

123
12
1
12

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
print(cascade(123))
```

Program output:
```
123
12
1
12
```

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)

cascade(123)
```

(Demo)

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Program output:

```
123
12
1
12
```
The Cascade Function

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)

cascade(123)
```

Program output:
```
123
12
1
12
```
Two Definitions of Cascade

(Demo)
Two Definitions of Cascade

(Demo)

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
Two Definitions of Cascade

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

(Demo)

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure
Example: Inverse Cascade
Inverse Cascade

Write a function that prints an inverse cascade:
Inverse Cascade

Write a function that prints an inverse cascade:

1
12
123
1234
123
12
1
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

1
12
123
1234
123
12
1
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

grow = lambda n: f_then_g(grow, print, n // 10)
shrink = lambda n: f_then_g(print, shrink, n // 10)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
1
12
123
1234
123
12
1
def inverse_cascade(n):
grow(n)
print(n)
shrink(n)
def f_then_g(f, g, n):
    if n:
        f(n)
g(n)
grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)
```
Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \]

[Image of Fibonacci sequence](http://en.wikipedia.org/wiki/File:Fibonacci.jpg)
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[n: \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[\text{fib}(n): \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, & \ldots, & \quad 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, & \ldots, & \quad 9,227,465
\end{align*}
\]
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[n: \quad 0, 1, 2, 3, 4, 5, 6, \quad 7, \quad 8, \quad \ldots, \quad 35 \]

\[\text{fib(n):} \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \quad \ldots, \quad 9,227,465 \]

```python
def fib(n):
    if n == 0:
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n & : \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
fib(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
```
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n & : \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) & : \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
```
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\[
\begin{align*}
n & : 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, \quad 35 \\
fib(n) & : 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, \quad 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n & : 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
n & : 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465 \\
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

\[\text{fib}(5) \]
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
  fib(5)
     |
   fib(3)
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
   fib(5)
   /|
  /  \
/    \
fib(3)  fib(4)
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure...
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
Repetition in Tree-Recursive Computation
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

```
<table>
<thead>
<tr>
<th>fib(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(3)   fib(4)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>fib(1)   fib(2)   fib(0)   fib(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1   fib(0)   fib(1)   fib(0)   fib(1)   fib(1)   fib(2)</td>
</tr>
<tr>
<td>0   1           0   1   1           fib(0)   fib(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0   1   1   fib(0)   fib(1)</td>
</tr>
<tr>
<td>0   1</td>
</tr>
<tr>
<td>0   1</td>
</tr>
</tbody>
</table>
```
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

(We will speed up this computation dramatically in a few weeks by remembering results)
Example: Towers of Hanoi
Towers of Hanoi

\[n = 1: \text{move disk from post 1 to post 2} \]
Towers of Hanoi

\[n = 1: \text{move disk from post 1 to post 2} \]
Towers of Hanoi

\[n = 1: \text{move disk from post 1 to post 2} \]
def move_disk(disk_number, from_peg, to_peg):
 print("Move disk " + str(disk_number) + " from peg "
 + str(from_peg) + " to peg " + str(to_peg) + ".")

def solve_hanoi(n, start_peg, end_peg):
 if n == 1:
 move_disk(n, start_peg, end_peg)
 else:
def move_disk(disk_number, from_peg, to_peg):
 print("Move disk " + str(disk_number) + " from peg " \
 + str(from_peg) + " to peg " + str(to_peg) + ".")

def solve_hanoi(n, start_peg, end_peg):
 if n == 1:
 move_disk(n, start_peg, end_peg)
 else:
 spare_peg = 6 - start_peg - end_peg
 solve_hanoi(n - 1, start_peg, spare_peg)
 move_disk(n, start_peg, end_peg)
 solve_hanoi(n - 1, spare_peg, end_peg)
def solve_hanoi(n, start_peg, end_peg):
 if n == 1:
 move_disk(n, start_peg, end_peg)
 else:
 spare_peg = 6 - start_peg - end_peg
 solve_hanoi(n - 1, start_peg, spare_peg)
 move_disk(n, start_peg, end_peg)
 solve_hanoi(n - 1, spare_peg, end_peg)

hanoi(3,1,2)
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 & = 6 \\
1 + 1 + 4 & = 6 \\
3 + 3 & = 6 \\
1 + 2 + 3 & = 6 \\
1 + 1 + 1 + 3 & = 6 \\
2 + 2 + 2 & = 6 \\
1 + 1 + 2 + 2 & = 6 \\
1 + 1 + 1 + 1 + 2 & = 6 \\
1 + 1 + 1 + 1 + 1 + 1 & = 6
\end{align*}
\]
The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\[\text{count_partitions}(6, 4) \]

\[
2 + 4 = 6 \\
1 + 1 + 4 = 6 \\
3 + 3 = 6 \\
1 + 2 + 3 = 6 \\
1 + 1 + 1 + 3 = 6 \\
2 + 2 + 2 = 6 \\
1 + 1 + 2 + 2 = 6 \\
1 + 1 + 1 + 1 + 2 = 6 \\
1 + 1 + 1 + 1 + 1 + 1 = 6
\]
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

$$\text{count_partitions}(6, 4)$$

$$2 + 4 = 6$$
$$1 + 1 + 4 = 6$$
$$3 + 3 = 6$$
$$1 + 2 + 3 = 6$$
$$1 + 1 + 1 + 3 = 6$$
$$2 + 2 + 2 = 6$$
$$1 + 1 + 2 + 2 = 6$$
$$1 + 1 + 1 + 1 + 2 = 6$$
$$1 + 1 + 1 + 1 + 1 + 1 = 6$$
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

$$\text{count_partitions}(6, 4)$$
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

\text{count_partitions}(6, 4)

• Recursive decomposition: finding simpler instances of the problem.

Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

$\text{count_partitions}(6, 4)$

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[\text{count_partitions}(6, 4) \]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

\[\text{count_partitions}(6, 4) \]

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count}_\text{partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \text{count}_\text{partitions}(2, 4)
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \text{count_partitions}(2, 4)
 - \text{count_partitions}(6, 3)
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

\[\text{count_partitions}(6, 4) \]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \text{count_partitions}(2, 4)
 - \text{count_partitions}(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    # Implement the recursive function to count partitions
```

27
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

def count_partitions(n, m):
 if m > n:
 return 1
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m == 1 or n < 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count}_\text{partitions}(2, 4) \)
 - \(\text{count}_\text{partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

27
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - $\text{count_partitions}(2, 4)$
 - $\text{count_partitions}(6, 3)$
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 0
    elif n == m:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - $\text{count_partitions}(2, 4)$
 - $\text{count_partitions}(6, 3)$
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • `count_partitions(2, 4)`
 • `count_partitions(6, 3)`
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4
- Don't use any 4

Solve two simpler problems:

- $\text{count_partitions}(2, 4)$
- $\text{count_partitions}(6, 3)$

Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)