Tree Recursion
Announcements
Order of Recursive Calls
The Cascade Function

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n / 10)
        cascade(n // 10)
    print(n)
cascade(123)
```

Program output:
```
123
12
1
12
```
Two Definitions of Cascade

(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

• If two implementations are equally clear, then shorter is usually better
• In this case, the longer implementation is more clear (at least to me)
• When learning to write recursive functions, put the base cases first
• Both are recursive functions, even though only the first has typical structure
Example: Inverse Cascade
Inverse Cascade

Write a function that prints an inverse cascade:

```
1
12
123
1234
123
12
1
```

```python
def inverse_cascade(n):
    def f_then_g(f, g, n):
        if n:
            f(n)
            g(n)

    grow = lambda n: f_then_g(grow, print, n // 10)
    shrink = lambda n: f_then_g(print, shrink, n // 10)

    grow(n)
    print(n)
    shrink(n)
```

Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
 n &: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
 \text{fib}(n) &: \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of \texttt{fib} evolves into a tree structure.
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

(We will speed up this computation dramatically in a few weeks by remembering results)
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

$$\text{count_partitions}(6, 4)$$

2 + 4 = 6
1 + 1 + 4 = 6
3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6
1 + 1 + 2 + 2 = 6
1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 = 6
The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in non-decreasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

Recursion decomposition: finding simpler instances of the problem.

Explore two possibilities:
- Use at least one 4
- Don't use any 4

Solve two simpler problems:
- \(\text{count_partitions}(2, 4) \)
- \(\text{count_partitions}(6, 3) \)

Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)