Tree Recursion

Order of Recursive Calls

Two Definitions of Cascade

(Demo)

Two Definitions of Cascade

(Demo)

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

```
1   def inverse_cascade(n):
12   grow(n)
123  print(n)
1234 shrink(n)
123  def f_then_g(f, g, n):
1  if n:
1     f(n)
1     g(n)

grow = lambda n: f_then_g(  )
shrink = lambda n: f_then_g(  )
```

Tree Recursion

Announcements

The Cascade Function

The Cascade Function

(Demo)
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

- \(n = 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots \)
- \(\text{fib}(n) = 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \)

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

- A Tree-Recursive Process
 - The computational process of \(\text{fib} \) evolves into a tree structure

Repetition in Tree-Recursive Computation

This process is highly repetitive; \(\text{fib} \) is called on the same argument multiple times.

- \(\text{fib}(5) \)
 - \(\text{fib}(3) \)
 - \(\text{fib}(1) \)
 - \(\text{fib}(2) \)
 - \(\text{fib}(0) \)

(We will speed up this computation dramatically in a few weeks by remembering results)

Counting Partitions

- The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

Example: Counting Partitions

- \(\text{count_partitions}(6, 4) \)
 - \(2 + 4 = 6 \)
 - \(1 + 1 + 4 = 6 \)
 - \(3 + 3 = 6 \)
 - \(1 + 2 + 3 = 6 \)
 - \(1 + 1 + 1 + 3 = 6 \)
 - \(2 + 2 + 2 = 6 \)
 - \(1 + 1 + 2 + 2 = 6 \)
 - \(1 + 1 + 1 + 1 + 2 = 6 \)
 - \(1 + 1 + 1 + 1 + 1 + 1 = 6 \)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don’t use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(We will speed up this computation dramatically in a few weeks by remembering results)