Announcements

• First test is on Wednesday, 5–7PM (PT).

• LOST section at 4PM will focus extensively on reverse environment diagrams and recursion for midterm review.

• Our indefatigable TAs have created study guides for the upcoming test. See Piazza @808.

• On Saturday (2/13), there are is also an upcoming CSM midterm review from 11AM-12:30PM (Piazza @841), and an HKN review session from 2:30PM-5:30PM (Piazza @827).

• Ask questions on the Piazza thread for today’s lecture (Piazza @882).
Multiple Variables

• The iteration variable in a for can actually be like the left-hand side of an assignment.

• One can write

```python
>>> L = [(1, 9), (2, 2), (5, 6), (3, 3)]
>>> same = 0
>>> for x, y in L:
...     if x == y:
...         same += 1
>>> same
2
```

• The elements of L are themselves tuples, so we get the effect of the series of assignments:

```python
x, y = (1, 9)
x, y = (2, 2)
...```
Two Iterations at Once!

- The predefined `zip` function combines multiple sequences:
  ```python
 >>> list(zip([1, 2, 5, 3], [9, 2, 6, 3, 10]))
 [(1, 9), (2, 2), (5, 6), (3, 3)]
 >>> # Length of result is that of shortest sequence
 >>> list(zip([1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12, 15]))
 [(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12)]
  ```

  *(zip actually returns a *generator*, which we'll cover later.)*

- Together with multiple assignments in a `for` loop, gives a way of iterating through sequences in lockstep:
  ```python
 >>> beasts = ["aardvark", "axolotl", "gnu", "hartebeest"]
 >>> for n, animal in zip(range(1, 5), beasts):
 ... print(n, animal)
 1 aardvark
 2 axolotl
 3 gnu
 4 hartebeest
  ```
Modifying Lists

- Lists are mutable sequences. One can assign to elements and to slices.

```python
g L = [1, 2, 3, 4, 5]
g L[2] = 6
g L
g L
[1, 2, 6, 4, 5]
g L[1:3] = [9, 8]
g L
[1, 9, 8, 4, 5]
g L[2:4] = [] # Deleting elements

g L
[1, 9, 5]
g L[1:1] = [2, 3, 4, 5] # Inserting elements

g L
[1, 2, 3, 4, 5, 9, 5]
g L[len(L):] = [10, 11] # Appending

g L
[1, 2, 3, 4, 5, 9, 5, 10, 11]
g L[0:0] = range(-3, 0) # Prepending

g L
[-3, -2, -1, 1, 2, 3, 4, 5, 9, 5, 10, 11]
```
List Comprehensions

• Full form:

  \[
  \left[ \text{<expression>} \text{ for } \text{<var>} \text{ in } \text{<sequence expression>}
  \quad \text{if } \text{<boolean expression> } \right]
  \]

  where the if is optional.

• Example: Squares of the prime numbers up to 100.

  \[
  \left[ x^2 \text{ for } x \text{ in range}(101) \text{ if } \text{isprime}(x) \right]
  \]

• The comprehension’s value is computed in a new local frame, so that
  (unlike the for statement), the value of \(x\) is undefined afterwards.

• Actually, one can have multiple for clauses, giving the effect of a
  loop within a loop:

  >>> \[
  \left[ (a, b) \text{ for } a \text{ in range}(10, 13) \text{ for } b \text{ in range}(2) \right]
  \]

  \[
  [(10, 0), (10, 1), (11, 0), (11, 1), (12, 0), (12, 1)]
  \]
Exercise I

- Give a one-line expression that takes two lists and returns the number of indices in which both have the same value.

```python
def matches(a, b):
 """Return the number of values k such that A[k] == B[k]."
 >>> matches([1, 2, 3, 4, 5], [3, 2, 3, 0, 5])
 3
 >>> matches("abdomens", "indolence")
 4
 >>> matches("abcd", "dcba")
 0
 >>> matches("abcde", "edcba")
 1
 """
```
Exercise II

- Fill in the blank to make the comment true.

```python
def triangle(n):
 """Assuming N >= 0, return the list consisting of N lists:
 [1], [1, 2], [1, 2, 3], ... [1, 2, ... N].
 >>> triangle(0)
 []
 >>> triangle(1)
 [[1]]
 >>> triangle(5)
 [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]]
 """
```
An aside: Sequences in Unix

- Many Unix utilities operate on *streams of characters*, which are sequences.
- With the help of pipes, one can do amazing things. One of my favorites:

```
tr -c -s '[:alpha:]' '[:\n*]' < FILE | |
sort | |
uniq -c | |
sort -n -r -k 1,1 | |
sed 20q
```

which prints the 20 most frequently occurring words in `FILE`, with their frequencies, most frequent first.

- The commands actually mean:
  1. Translate non-alphabetic characters to newlines and collapse adjacent newlines.
  2. Sort the result of 1.
  3. Collapse adjacent duplicate lines from 2; prepend duplicate count.
  4. Sort the result of 3 numerically by the duplicate count.
  5. Print the first 20 lines of 4 and then quit.
Data Abstraction
Philosophy

• In the old days, one described programs as hierarchies of actions: *procedural decomposition*.

• Starting in the 1970's, emphasis moved to the data that the functions operate on.

• An *abstract data type (ADT)* (like the pair abstraction from the last lecture) represents some kind of thing and the operations on it.

• We can usefully organize our programs around the ADTs in them.

• For each type, we define an *interface* that describes for users ("clients") of that type of data what operations are available (*API* for *Application Programmer’s Interface*).

• Typically, the interface consists of functions.

• The collection of specifications (syntactic and semantic) of these functions constitutes a *specification of the type*.

• We call ADTs *abstract* because clients ideally need not know internals.
Classification

- As an example, last time we defined a *pair* type as a set of functions.
- Some of these functions fall into common categories:
  - *Constructors* create new items of the type: e.g., `pair`.
  - *Accessors* return properties of items of the type: e.g., `left` and `right`.
  - *Mutators* modify items of the type: e.g., `set_left` and `set_right`. 
Rational Numbers

- The book uses “rational number” as an example of an ADT:
  ```python
def make_rat(n, d): # Constructor
 """The rational number N/D, assuming N, D are integers, D!=0""

 def numer(r): # Accessor
 """The numerator of rational number R.""

 def denom(r): # Accessor
 """The denominator of rational number R.""
```

- The last two definitions pretend that \( r \) really is a rational number.

- But from this point of view, the definitions of `numer` and `denom` are problematic. Why?
A Better Specification

• Problem is that “the numerator (denominator) of \( r \)” is not well-defined for a rational number.

• If \texttt{make\_rat} really produced rational numbers, then \texttt{make\_rat(2, 4)} and \texttt{make\_rat(1, 2)} ought to be identical. So should \texttt{make\_rat(1, -1)} and \texttt{make\_rat(-1, 1)}.

• So a better specification would be

```python
 def numer(r):
 """The numerator of rational number R in lowest terms."""

 def denom(r):
 """The denominator of rational number R in lowest terms. Always positive."""
```
Additional Operations

- Rationals, being numbers, should support numeric and other operations:

  ```python
 def add_rat(x, y):
 """The sum of rational numbers X and Y."""

 def mul_rat(x, y):
 """The product of rational numbers X and Y."""

 def str_rat(r):
 """Return R as a string containing a rational fraction.
 >>> str_rat(make_rat(2, 4))
 1/2
 >>> str_rat(make_rat(3, 1))
 3
 """

 def equal_rat(x, y):
 """Return True iff X and Y are equal rational numbers."""
  ```
Using Rationals

• For example, we can now write functions that (aside from syntax) manipulate rationals as we would other kinds of number:

```python
def approx_harmonic_number(n):
 """Return an approximation to 1 + 1/2 + 1/3 + ... + 1/N.""
 s = 0.0
 for k in range(1, n + 1):
 s = s + 1 / k
 return s

def exact_harmonic_number(n):
 """Return 1 + 1/2 + 1/3 + ... + 1/N as a rational number.""
 s = make_rat(0, 1)
 for k in range(1, n + 1):
 s = add_rat(s, make_rat(1, k))
 return s
```

• Later, we’ll see how to make the syntax (nearly) identical as well.
Representing Rationals

• Either the pair abstraction from last time (represented by functions) or Python tuples or lists can represent rational numbers.

```python
from math import gcd

def make_rat(n, d):
 """The rational number N/D, assuming N, D are integers, D!=0""
 g = gcd(n, d)
 n //= g; d //= g
 return (n, d)

def numer(r):
 """The numerator of rational number R in lowest terms.""
 return r[0]

def denom(r):
 """The denominator of rational number R in lowest terms.
 Always positive.""
 return r[1]
```
Implementing Additional Operations

• One possibility for \texttt{add\_rat}:

\begin{verbatim}
from math import gcd

def make_rat(n, d):
    """The rational number N/D, assuming N, D are integers, D!=0""
    g = gcd(n, d)
    n //= g; d //= g
    return (n, d)
...

def add_rat(x, y):
    n0, d0 = x
    n1, d1 = y
    n = n0 * d1 + n1 * d0
    d = d0 * d1
    g = gcd(n, d)
    n //= g; d //= g
    return (n, d)
\end{verbatim}

• Comments?
Abstraction Violations and DRY

• Having created an abstraction (make_rat, numer, denom), use it:
  1. Later changes of representation will affect less code.
  2. Code will be clearer, since well-chosen names in the API make intent clear.

• Better implementations of the additional operations might then be

  def add_rat(x, y):
      return make_rat(numer(x) * denom(y) + numer(y) * denom(x),
                      denom(x) * denom(y))

  def mul_rat(x, y):
      return make_rat(numer(x) * numer(y), denom(x) * denom(y))

  def str_rat(r):
    # (For fun: a little new Python string magic)
    return str(numer(r)) if denom(r) == 1 else f"{numer(r)}/{denom(r)}"

  def equal_rat(x, y):
    return numer(x) * denom(y) == numer(y) * denom(x)
Layers of Abstraction

So we can divide up our operations like this:

<table>
<thead>
<tr>
<th>Primitives</th>
<th>(⋯, ⋯)</th>
<th>⋯[⋯]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>make_rat</td>
<td>numer</td>
</tr>
<tr>
<td>Derived Operations:</td>
<td>add_rat</td>
<td>mul_rat</td>
</tr>
<tr>
<td>User Program:</td>
<td>exact_harmonic_number</td>
<td></td>
</tr>
</tbody>
</table>

- The dark lines here represent abstraction barriers.
- Layers above a barrier use nothing beneath them.
- Layers below a barrier use only the operations from the layer above, which we say are exported to it.
Abstraction Violations

• So as well as violating DRY, the implementation

    def add_rat(x, y):
        n0, d0 = x       # NAUGHTY
        n1, d1 = y       # NAUGHTY
        n = n0 * d1 + n1 * d0
        d = d0 * d1
        g = gcd(n, d)
        n //= g; d //= g
        return (n, d)    # NAUGHTY

violates the abstraction barrier above `add_rat`, reaching into the details of the representation instead of relying on its exported operations.