Lecture #11: Sequences (II) and Data Abstraction
Announcements

• First test is on Wednesday, 5-7PM (PT).

• LOST section at 4PM will focus extensively on reverse environment diagrams and recursion for midterm review.

• Our indefatigable TAs have created study guides for the upcoming test. See Piazza @808.

• On Saturday (2/13), there are is also an upcoming CSM midterm review from 11AM-12:30PM (Piazza @841), and an HKN review session from 2:30PM-5:30PM (Piazza @827).

• Ask questions on the Piazza thread for today’s lecture (Piazza @882).
Multiple Variables

- The iteration variable in a `for` can actually be like the left-hand side of an assignment.

- One can write
  ```python
  >>> L = [(1, 9), (2, 2), (5, 6), (3, 3)]
  >>> same = 0
  >>> for x, y in L:
  ...   if x == y:
  ...     same += 1
  >>> same
  2
  ```

- The elements of L are themselves tuples, so we get the effect of the series of assignments:
  ```python
  x, y = (1, 9)
  x, y = (2, 2)
  ```
Two Iterations at Once!

- The predefined `zip` function combines multiple sequences:
  ```python
  >>> list(zip([1, 2, 5, 3], [9, 2, 6, 3, 10]))
  [(1, 9), (2, 2), (5, 6), (3, 3)]
  >>> # Length of result is that of shortest sequence
  >>> list(zip([1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12, 15]))
  [(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12)]
  ```

- (`zip` actually returns a *generator*, which we’ll cover later.)

- Together with multiple assignments in a `for` loop, gives a way of iterating through sequences in lockstep:
  ```python
  >>> beasts = ["aardvark", "axolotl", "gnu", "hartebeest"]
  >>> for n, animal in zip(range(1, 5), beasts):
  ...     print(n, animal)
  1 aardvark
  2 axolotl
  3 gnu
  4 hartebeest
  ```
Modifying Lists

- Lists are mutable sequences. One can assign to elements and to slices.

```python
>>> L = [1, 2, 3, 4, 5]
>>> L[2] = 6
>>> L
[1, 2, 6, 4, 5]
>>> L[1:3] = [9, 8]
>>> L
[1, 9, 8, 4, 5]
>>> L[2:4] = []  # Deleting elements
>>> L
[1, 9, 5]
>>> L[1:1] = [2, 3, 4, 5]  # Inserting elements
>>> L
[1, 2, 3, 4, 5, 9, 5]
>>> L[len(L):] = [10, 11]  # Appending
>>> L
[1, 2, 3, 4, 5, 9, 5, 10, 11]
>>> L[0:0] = range(-3, 0)  # Prepending
>>> L
[-3, -2, -1, 1, 2, 3, 4, 5, 9, 5, 10, 11]
```
List Comprehensions

• Full form:

 \[
 \left[\begin{array} \text{ <expression> } & \text{ for } & \text{ <var> } & \text{ in } & \text{ <sequence expression> } \\
 & \text{ if } & \text{ <boolean expression> } \end{array} \right]
 \]

 where the if is optional.

• Example: Squares of the prime numbers up to 100.

 \[
 \left[\begin{array} \text{ x*x } & \text{ for } & \text{ x } & \text{ in } & \text{ range(101) } & \text{ if } & \text{ isprime(x) } \end{array} \right]
 \]

• The comprehension’s value is computed in a new local frame, so that (unlike the for statement), the value of \(x \) is undefined afterwards.

• Actually, one can have multiple for clauses, giving the effect of a loop within a loop:

 >>> \left[\begin{array} \text{ (a, b) } & \text{ for } & \text{ a } & \text{ in } & \text{ range(10, 13) } & \text{ for } & \text{ b } & \text{ in } & \text{ range(2) } \end{array} \right]

 \[
 [(10, 0), (10, 1), (11, 0), (11, 1), (12, 0), (12, 1)]
 \]
Exercise I

• Give a one-line expression that takes two lists and returns the number of indices in which both have the same value.

```python
def matches(a, b):
    """Return the number of values k such that A[k] == B[k]."
    >>> matches([1, 2, 3, 4, 5], [3, 2, 3, 0, 5])
    3
    >>> matches("abdomens", "indolence")
    4
    >>> matches("abcd", "dcba")
    0
    >>> matches("abcde", "edcba")
    1
    """
```
Exercise II

• Fill in the blank to make the comment true.

```python
def triangle(n):
    """Assuming N >= 0, return the list consisting of N lists:
    [1], [1, 2], [1, 2, 3], ... [1, 2, ... N].
    >>> triangle(0)
    []
    >>> triangle(1)
    [[1]]
    >>> triangle(5)
    [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]]
    """
```
An aside: Sequences in Unix

- Many Unix utilities operate on *streams of characters*, which are sequences.

- With the help of pipes, one can do amazing things. One of my favorites:

  ```
  tr -c -s '[:alpha:]' '[\n*]' < FILE | \
  sort | \
  uniq -c | \
  sort -n -r -k 1,1 | \
  sed 20q
  ```

 which prints the 20 most frequently occurring words in *FILE*, with their frequencies, most frequent first.

- The commands actually mean:

 1. Translate non-alphabetic characters to newlines and collapse adjacent newlines.
 2. Sort the result of 1.
 3. Collapse adjacent duplicate lines from 2; prepend duplicate count.
 4. Sort the result of 3 numerically by the duplicate count.
 5. Print the first 20 lines of 4 and then quit.
Data Abstraction
In the old days, one described programs as hierarchies of actions: *procedural decomposition*.

Starting in the 1970's, emphasis moved to the data that the functions operate on.

An *abstract data type (ADT)* (like the pair abstraction from the last lecture) represents some kind of thing and the operations on it.

We can usefully organize our programs around the ADTs in them.

For each type, we define an *interface* that describes for users ("clients") of that type of data what operations are available (*API* for *Application Programmer's Interface*).

Typically, the interface consists of functions.

The collection of specifications (syntactic and semantic) of these functions constitutes a *specification of the type*.

We call ADTs *abstract* because clients ideally need not know internals.
Classification

• As an example, last time we defined a *pair* type as a set of functions.
• Some of these functions fall into common categories:
 - *Constructors* create new items of the type: e.g., *pair*.
 - *Accessors* return properties of items of the type: e.g., *left* and *right*.
 - *Mutators* modify items of the type: e.g., *set_left*, and *set_right*.
Rational Numbers

• The book uses “rational number” as an example of an ADT:

  ```python
  def make_rat(n, d):       # Constructor
      """The rational number N/D, assuming N, D are integers, D!=0""

  def numer(r):             # Accessor
      """The numerator of rational number R.""

  def denom(r):             # Accessor
      """The denominator of rational number R.""
  ```

• The last two definitions pretend that r really is a rational number.

• But from this point of view, the definitions of `numer` and `denom` are problematic. Why?
A Better Specification

- Problem is that “the numerator (denominator) of \(r \)” is not well-defined for a rational number.

- If `make_rat` really produced rational numbers, then `make_rat(2, 4)` and `make_rat(1, 2)` ought to be identical. So should `make_rat(1, -1)` and `make_rat(-1, 1)`.

- So a better specification would be

  ```python
  def numer(r):
      """The numerator of rational number R in lowest terms."
      
  def denom(r):
      """The denominator of rational number R in lowest terms. Always positive.""
  ```
Additional Operations

• Rationals, being numbers, should support numeric and other operations:

```python
def add_rat(x, y):
    """The sum of rational numbers X and Y.""

def mul_rat(x, y):
    """The product of rational numbers X and Y.""

def str_rat(r):
    """Return R as a string containing a rational fraction.
>>> str_rat(make_rat(2, 4))
1/2
>>> str_rat(make_rat(3, 1))
3
""

def equal_rat(x, y):
    """Return True iff X and Y are equal rational numbers.""
```
Using Rationals

• For example, we can now write functions that (aside from syntax) manipulate rationals as we would other kinds of number:

```python
def approx_harmonic_number(n):
    """Return an approximation to 1 + 1/2 + 1/3 + ... + 1/N.""
    s = 0.0
    for k in range(1, n + 1):
        s = s + 1 / k
    return s

def exact_harmonic_number(n):
    """Return 1 + 1/2 + 1/3 + ... + 1/N as a rational number.""
    s = make_rat(0, 1)
    for k in range(1, n + 1):
        s = add_rat(s, make_rat(1, k))
    return s
```

• Later, we’ll see how to make the syntax (nearly) identical as well.
Representing Rationals

- Either the pair abstraction from last time (represented by functions) or Python tuples or lists can represent rational numbers.

```python
from math import gcd

def make_rat(n, d):
    """The rational number N/D, assuming N, D are integers, D!=0""
    g = gcd(n, d)
    n //= g; d //= g
    return (n, d)

def numer(r):
    """The numerator of rational number R in lowest terms.""
    return r[0]

def denom(r):
    """The denominator of rational number R in lowest terms. Always positive.""
    return r[1]
```
Implementing Additional Operations

• One possibility for `add_rat`:

```python
from math import gcd

def make_rat(n, d):
    """The rational number N/D, assuming N, D are integers, D!=0""
    g = gcd(n, d)
    n //= g; d //= g
    return (n, d)

... 

def add_rat(x, y):
    n0, d0 = x
    n1, d1 = y
    n = n0 * d1 + n1 * d0
    d = d0 * d1
    g = gcd(n, d)
    n //= g; d //= g
    return (n, d)
```

• Comments?
Abstraction Violations and DRY

- Having created an abstraction (make_rat, numer, denom), use it:
 1. Later changes of representation will affect less code.
 2. Code will be clearer, since well-chosen names in the API make intent clear.

- Better implementations of the additional operations might then be

  ```python
  def add_rat(x, y):
      return make_rat(numer(x) * denom(y) + numer(y) * denom(x),
                      denom(x) * denom(y))
  
  def mul_rat(x, y):
      return make_rat(numer(x) * numer(y), denom(x) * denom(y))
  
  def str_rat(r):
      # (For fun: a little new Python string magic)
      return str(numer(r)) if denom(r) == 1 else f"{numer(r)}/{denom(r)}"
  
  def equal_rat(x, y):
      return numer(x) * denom(y) == numer(y) * denom(x)
  ```
Layers of Abstraction

- So we can divide up our operations like this:

<table>
<thead>
<tr>
<th>Primitives</th>
<th>(⋯, ⋯)</th>
<th>⋯[⋯]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>make_rat</td>
<td>numer</td>
</tr>
<tr>
<td>Derived Operations:</td>
<td>add_rat</td>
<td>mul_rat</td>
</tr>
<tr>
<td>User Program:</td>
<td>exact_harmonic_number</td>
<td></td>
</tr>
</tbody>
</table>

- The dark lines here represent **abstraction barriers**.
- Layers above a barrier use nothing beneath them.
- Layers below a barrier use only the operations from the layer above, which we say are **exported** to it.
Abstraction Violations

- So as well as violating DRY, the implementation

```python
def add_rat(x, y):
    n0, d0 = x  # NAUGHTY
    n1, d1 = y  # NAUGHTY
    n = n0 * d1 + n1 * d0
    d = d0 * d1
    g = gcd(n, d)
    n //= g; d //= g
    return (n, d)  # NAUGHTY
```

violates the abstraction barrier above `add_rat`, reaching into the
details of the representation instead of relying on its exported
operations.