lterators and Generators

Announcements

Building Lists of Branches

Example: Make Path

A list describes a path if 1t contains labels along a path from the root of a tree.
Implement make_path, which takes a tree t with unique labels and a list p that starts with
the root label of t. It returns the tree u with the fewest nodes that contains all the paths
in t as well as a (possibly new) path p.

t1 make_path(t1l, [3,8,9,1]1) make path(tl, [3,4,8,9]1) make_path(tl, [3,5,6,8])

Recursive idea: make path(b, p[l:]) 1S a branch of the tree returned by make path(t, p)

Special case: if no branch starts with p[1l], then a leaf labeled pl[l] needs to be added

Example: Make Path

A list describes a path if 1t contains labels along a path from the root of a tree.
Implement make_path, which takes a tree t with unique labels and a list p that starts with
the root label of t. It returns the tree u with the fewest nodes that contains all the paths

in t as well as a (possibly new) path p.
def make_path(t, p):

tl make_path(t1,

make_path(tl, [3,4,8,9])

[3,8,9,1])

"Return a tree like t also containing path p."
assert p[@] == label(t), 'Impossible'’
if len(p) == 1:
return t
new branches = []
found_pl = False
for b in branches(t):
if label(b) == p[1]:
Y new_branches.append(_Make_path(b, pl1:])
found_pl = True
else:
@ new_branches.append(b)
1t not found pl:
<>new_branches.append(make—path(tree(p[1])' pl1:]1))
return tree(label(t), new_branches)

List Practice

https://pythontutor.com/cp/composingprograms.html#code=5%20%3D%20%5B2,%20%5B3,%204%5D ,%205%5D%0As . append%28%5B6 ,%207%5D%29%0As . extend%28%5B8 ,%209%5D%29%0A t%20%3D%20%5B%5D%0At . extend%285%29%0As%5B3%5D . append%28s5%5B1%5D . pop%28%29%29%0Aprint%28t%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms. js&py=3&rawInputLstJSON=%5B%5D

Spring 2023 Midterm 2 Question 1

def chain(s):

S1
go

return [s[0], s[1:]]
ver = [2, chain([3, 4, 5])]
ld = [silver[0], silver[1].pop()]

S1

platinum =

ver[Q] =1
chain(chain([6, 7, 8]))

Reminder: s.pop() removes and
returns the last item in list s.

>>> silver

[1,

[3]]

>>> gold

[2,

[4, 5]]

>>> platinum

[6,

[[7, 8]]]

https://pyth

Global frame

chailn

/

silver

/'

go ld

platinum

/

chailn
S

[p=G]

ret val

func chain(s)

[parent=Globall

silver|[1]
evaluates to
this list

chailn
S

[p=G]

/

ret val

/'

chailn
S

[p=€;/

ret val

>

/

ontutor.com/cp/composingprograms.html#code=def%20chain%285%29%3A%0A%20%20%20%20return%20%5B5s%5B0%5D,%205%5B1%3A%
%2051 1ver%s5B1%5D. pop%28%29%5D%0As ilvers5B0%5D%20%3D%201%0Ap latinum%20%3D%20chain%28chain%28%5B6,%207 ,%208%5D%29%29%0A&cumulative=true&cu

5D%5D%0As11vers20%3D%20%5B2,%20chain%28%5B3, %204 ,%205%5D%29%5D%0Ago 1d%20%3D%20%5Bsilver
rInstr=

> 34| 5] Wust . flst :
"l 3 —| 4| 5 |;

silver[1].pop()
evaluates to
this list

ver%s5B0%5D,
0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Tuples

(Demo)

Iterators

lterators

A container can provide an 1terator that provides access to its elements 1n order

iter(iterable): Return an iterator over the elements
of an 1terable value

next(iterator): Return the next element in an iterator

(Demo)

>>>
>>2>
>>>

>>2>

>>2>
>>>

>>2>

>>2>

v
[3, 4, 5]

iter(s)
hext(t)

S

next(t)

u = iter(s)
next(u)

next(t)

next(u)

Break: 5 minutes

Map Function

Map

map(func, iterable): Make an iterator over the return values of calling func on each
element of the 1iterable.

(Demo)

Generators

Generators and Generator Functions

>>> def plus_minus(x):
yield X
yield —x

>>> t = plus_minus(3)

>>> next(t)

3

>>> next(t)

-3

>>> T

<generator object plus_minus ...>

A generator function is a function that yields values instead of returning them
A normal function returns once; a generator function can yield multiple times
A generator 1s an 1iterator created automatically by calling a generator function

When a generator function 1s called, 1t returns a generator that iterates over its yields

(Demo)

Spring 2023 Midterm 2 Question 5(b) Revisited

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement park, a generator function that yields all the ways, represented as strings, that
vehicles can be parked 1in n adjacent parking spots for positive integer n.

def park(n):
"""Yield the ways to park cars and motorcycles in n adjacent spots.

>>> sorted(park(1))

['%', '.']

>>> sorted(park(2))

[IO/OO/OI’ IO/O-I, I.o/ol’ I..I’ I<>I]

>>> len(list(park(4))) # some examples: '<><>',
29

