Midterm Review

Announcements

Generator Problem

Spring 2023 Midterm 2 Question 5(b) Revisited

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement park, a generator function that yields all the ways, represented as strings, that
vehicles can be parked 1in n adjacent parking spots for positive integer n.

def park(n):
"""Yield the ways to park cars and motorcycles in n adjacent spots.

>>> sorted(park(1))

['%', '.']

>>> sorted(park(2))

[IO/OO/OI’ IO/O-I, I.o/ol’ I..I’ I<>I]

>>> len(list(park(4))) # some examples: '<><>',
29

List Practice

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]

t = [5, 6]
Operation Examp le Result
append adds one s.append(t) s - [2, 3, [5, 6]] 1
element to a list t =20 t -0 3
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |[t[1] = 0 t - [5, 0]
to another Llist
addition & slicing a =5 + [t] s -» [2, 3] !
create new lists b = all:] t - [5, O] x@
containing existing alll] =9 a - [2, 9, [5, 0]l
elements b[1] [1] = © b - [3, [5, 0]]

Lists in Environment Diagrams

Assume that before each example below we execute:

s = [2, 3]
t = [5, 6]
Operation Examp le Result Global
append adds one s.append(t) s - [2, 3, [5, 6]] S .
element to a list t =20 t -0 t
extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] = 0 t - [5, O]
to another Llist
addition & slicing a =5 + [t] s - [2, 3]
create new lists b = al[l:] t - [5, O]
containing existing alll = 9 a - [2, 9, [5, 0]]
elements b[1][1] = © b - [3, [5, 0]]
The 1list function t = list(s) s - [2, 0]
also creates a new s[1] = 0 t - [2, 3]

list containing
existing elements

list
0

2 X0
list
0

2 3
list
0

5 0

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]

t = [5, 6]
Operation Examp le Result Global
append adds one s.append(t) s - [2, 3, [5, 6]] S -
element to a list t =0 t > 0 t | - ‘\\\\\\\\‘
extend adds all s.extend(t) s - [2, 3, 5, 6] U
elements in one list |t[1] = 0 t - [5, 0]
to another Llist
addition & slicing a =5 + [t] s - [2, 3] list
create new lists b = all:] t - [5, O] ;
containing existing alll = 9 a - [2, 9, [5, 0]]
elements b[1] [1] = © b - [3, [5, 0]]
The list function t = list(s) s - [2, 0]
also creates a new s[1l] = 0 t - [2, 3]
list containing
existing elements
[...] creates a new u = [s, t] s » [2, 3]
list t - [5, 6]

Lists in Environment Diagrams

Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

pop removes & returns |t = s.pop() s - [2]

the last element t - 3

remove removes the t.extend(t) s » [2, 3]
first element equal t.remove(5) t - [6, 5, 6]
to the argument

Lists in Lists in Lists in Environment Diagrams

T

= [[1, 2],

list(t)
t[0].append(t[1:2])

print(t)

[3, 4]]

A copy of t:
list(t) or t[:] or t + []

1 —

list
0
Vo
Global list
0 1

\

list

[[1, 2,

[[3, 4111,

[3, 41]

Fall 2022 Midterm 2 Question 2

def of(us):
def last(k):
"The last k items of us"
while k > 0:
result.append(us.pop())
K = k = 1
return result
return last

def surround(n, f):
"n is the first and last item of f(2)"
result = [n]
result = f(2)
result[@] = [n]
return result.append(n)

result = [1]
surround(3, of([4, 5, 6]))
print(result)

[[3], 6, 5, 3]

Global 4f

» func of(us) [parent=Global]

surround » func surround(n, f) [parent=Global]
list
result >
- “11'6 |5 |73 |
f1: of [parent=Globall list
> | 0 3
us -
last ~—_
Return value > func last(k) [parent=f1]
A
f2: surround [parent=Globall]
n 3 list
013
f //////v
_—
result
Return value None
f3: last [parent= f1]

K

Return value

Tree Practice

Spring 2023 Midterm 2 Question 4(a)

Implement exclude, which takes a tree t and a value x. It returns a tree containing the root

node of t as well as each non-root node of t with a label not equal to x. The parent of a

node 1n the result 1s 1ts nearest ancestor node that 1s not excluded.
def exclude(t, Xx):
"HHReturn a tree with the non-root nodes of tree t labeled anything but X.

>>> t = tree(l, [tree(2,
>>> exclude(t, 2)

[tree(2), tree(3), tree(4)]), tree(5, [tree(1l)])]

)

[1, [31, [4], [5, [1]]]

>>> exclude(t, 1) # The root node cannot be excluded

[1, [2, [2], [31, [4]1]1, [5]]

filtered_branches = map(lambda y: €Xctudely, %i , branches(t))
bs = [] | \

for b in filtered_branches: In Spring 2023,

37% of students

20% of students

o _ . .
30% got |if _‘apet{b) == . 9ot this right got this right
Lt right;

11_23911 :::::ﬁéf’extend (branches(b)<§f 24% got

options |else: | 1t right |

bs.append(b)

return tree(label(t), bs)

Break: 5 minutes

Lists & Recursion

Recursion Example: Large Sums

def large(s, n):
"HHReturn the sublist of positive numbers s with the
largest sum that 1s less than or equal to n.

Definition: A sublist of a
list s 1s a list with some
(or none or all) of the

elements of s. >>> large([4, 2, 5, 6, 7], 3)
Implement large, which takes 2]
a list of positive numbers s >[Z> éf]ﬂrge([4, 2, 5, 6, 71, 8)
and a non-negative number n. >>> large([4, 2, 5, 6, 7], 19)

(4, 2, 6, 7]
It returns the sublist of s >[;> })arge(%' 2, 5, 6, 71, 20)
with the largest sum that 1is s
less than or equal to n. if s == []:

return []

elif s[0] > n:

You may call sum_list, which return large(s[1l:], n)

takes a list and returns the

. else:
sum of 1ts elements. first = s[0]
with s@ = [first] + large(s[1:], n - first)
without_s@ = large(s[1:]1, n)

if sum_list(with _s@) > sum list(without s@):
return with_s@0

else:
return without s0

Add Consecutive

https://csb6la.org/exam/su24/midterm/6la-su24—-midterm. pdf#page=11

Tree Recursion Exam Problem

https://csb6la.org/exam/su22/midterm/6la-su22-midterm. pdf#page=10

