
Midterm Review

Announcements

Generator Problem

Spring 2023 Midterm 2 Question 5(b) Revisited

4

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement park, a generator function that yields all the ways, represented as strings, that
vehicles can be parked in n adjacent parking spots for positive integer n.

def park(n):
 """Yield the ways to park cars and motorcycles in n adjacent spots.

 >>> sorted(park(1))
 ['%', '.']
 >>> sorted(park(2))
 ['%%', '%.', '.%', '..', '<>']
 >>> len(list(park(4))) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """

List Practice

Lists in Environment Diagrams
Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

6

Operation Example Result

append adds one
element to a list

s.append(t)
t = 0

s → [2, 3, [5, 6]]
t → 0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] = 0

s → [2, 3, 5, 6]
t → [5, 0]

addition & slicing
create new lists
containing existing
elements

a = s + [t]
b = a[1:]
a[1] = 9
b[1][1] = 0

s → [2, 3]
t → [5, 0]
a → [2, 9, [5, 0]]
b → [3, [5, 0]]

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3

9

0

list
0

20 2 3
5 6

0

Lists in Environment Diagrams
Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

7

Global

s list
10

2t 3

list
10

5 6

0

Operation Example Result

append adds one
element to a list

s.append(t)
t = 0

s → [2, 3, [5, 6]]
t → 0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] = 0

s → [2, 3, 5, 6]
t → [5, 0]

addition & slicing
create new lists
containing existing
elements

a = s + [t]
b = a[1:]
a[1] = 9
b[1][1] = 0

s → [2, 3]
t → [5, 0]
a → [2, 9, [5, 0]]
b → [3, [5, 0]]

The list function
also creates a new
list containing
existing elements

t = list(s)
s[1] = 0

list
10

2 3

s → [2, 0]
t → [2, 3]

Lists in Environment Diagrams
Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

8

Operation Example Result

append adds one
element to a list

s.append(t)
t = 0

s → [2, 3, [5, 6]]
t → 0

extend adds all
elements in one list
to another list

s.extend(t)
t[1] = 0

s → [2, 3, 5, 6]
t → [5, 0]

addition & slicing
create new lists
containing existing
elements

a = s + [t]
b = a[1:]
a[1] = 9
b[1][1] = 0

s → [2, 3]
t → [5, 0]
a → [2, 9, [5, 0]]
b → [3, [5, 0]]

The list function
also creates a new
list containing
existing elements

t = list(s)
s[1] = 0

s → [2, 0]
t → [2, 3]

[...] creates a new
list

u = [s, t] s → [2, 3]
t → [5, 6]
u → [[2, 3], [5, 6]]

Global

s list
10

2t 3

list
10

5 6

u

list
10

Lists in Environment Diagrams
Assume that before each example below we execute:
s = [2, 3]
t = [5, 6]

9

Operation Example Result

pop removes & returns
the last element

t = s.pop() s → [2]
t → 3

remove removes the
first element equal
to the argument

t.extend(t)
t.remove(5)

s → [2, 3]
t → [6, 5, 6]

Lists in Lists in Lists in Environment Diagrams

10

t = [[1, 2], [3, 4]]
list(t)
t[0].append(t[1:2])
print(t)

Global

t

list
10

list
10

1 2

list
10

3 4

list
02

[[1, 2, [[3, 4]]], [3, 4]]

[

[[

[]

]]

list
10

A copy of t:
list(t) or t[:] or t + []

]

f3: last [parent=]

Return value

k 2

f2: surround [parent=Global]

Return value

n

f

3

f1: of [parent=Global]

Return value

us list
0 4 1 5 2 6

Fall 2022 Midterm 2 Question 2

11

def of(us):
 def last(k):
 "The last k items of us"
 while k > 0:
 result.append(us.pop())
 k = k - 1
 return result
 return last

def surround(n, f):
 "n is the first and last item of f(2)"
 result = [n]
 result = f(2)
 result[0] = [n]
 return result.append(n)

result = [1]
surround(3, of([4, 5, 6]))
print(result)

Global func of(us) [parent=Global]

result

of

surround func surround(n, f) [parent=Global]

last

func last(k) [parent=f1]

result

list
0 1

0

1 6 2 5

f1

list
0 3

None

3 3

[[3], 6, 5, 3]

list
0 3

Tree Practice

Spring 2023 Midterm 2 Question 4(a)
Implement exclude, which takes a tree t and a value x. It returns a tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a
node in the result is its nearest ancestor node that is not excluded.

13

def exclude(t, x):
 """Return a tree with the non-root nodes of tree t labeled anything but x.

 >>> t = tree(1, [tree(2, [tree(2), tree(3), tree(4)]), tree(5, [tree(1)])])
 >>> exclude(t, 2)
 [1, [3], [4], [5, [1]]]
 >>> exclude(t, 1) # The root node cannot be excluded
 [1, [2, [2], [3], [4]], [5]]
 """
 filtered_branches = map(lambda y: _______________, branches(t))
 bs = []
 for b in filtered_branches:

 if ________________:

 bs.________(______________)
 else:
 bs.append(b)
 return tree(label(t), bs)

exclude(y, x)

label(b) == x

extend

1

2 5

12 43

In Spring 2023,
20% of students
got this right

37% of students
got this right

30% got
it right;
1 of 4
options

branches(b) 24% got
it right

2 5

12 43

2 5

12 3

1

4

Break: 5 minutes

Lists & Recursion

Recursion Example: Large Sums
Definition: A sublist of a
list s is a list with some
(or none or all) of the
elements of s.
Implement large, which takes
a list of positive numbers s
and a non-negative number n.

It returns the sublist of s
with the largest sum that is
less than or equal to n.

You may call sum_list, which
takes a list and returns the
sum of its elements.

16

def large(s, n):
 """Return the sublist of positive numbers s with the
 largest sum that is less than or equal to n.

 >>> large([4, 2, 5, 6, 7], 3)
 [2]
 >>> large([4, 2, 5, 6, 7], 8)
 [2, 6]
 >>> large([4, 2, 5, 6, 7], 19)
 [4, 2, 6, 7]
 >>> large([4, 2, 5, 6, 7], 20)
 [2, 5, 6, 7]
 """
 if s == []:
 return []
 elif s[0] > n:
 return large(s[1:], n)
 else:
 first = s[0]
 with_s0 = _______________________________________
 without_s0 = ____________________________________
 if sum_list(with_s0) > sum_list(without_s0):
 return with_s0
 else:
 return without_s0

[first] + large(s[1:], n - first)
large(s[1:], n)

https://cs61a.org/exam/su24/midterm/61a-su24-midterm.pdf#page=11

Add Consecutive

https://cs61a.org/exam/su22/midterm/61a-su22-midterm.pdf#page=10

Tree Recursion Exam Problem

