
Data Abstraction

Announcements

Dictionaries

{'Dem': 0}

Dictionary Comprehensions

4

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Example: Multiples

Implement multiples, which takes two lists of positive numbers s and factors. It returns a
dictionary in which each element of factors is a key, and the value for each key is a list
of the elements of s that are multiples of the key.

5

def multiples(s, factors):
 """Create a dictionary where each factor is a key and each value
 is the elements of s that are multiples of the key.

 >>> multiples([3, 4, 5, 6, 7, 8], [2, 3])
 {2: [4, 6, 8], 3: [3, 6]}
 >>> multiples([1, 2, 3, 4, 5], [2, 5, 8])
 {2: [2, 4], 5: [5], 8: []}
 """

 return {d: [x for x in ________ if ___________] for d in ________}factorsx % d == 0s

Recursion

Recursion so far

double_eights(s: list[int]) -> bool:
 Strategy: Check if the first two elements are both 8s
 Call double_eights on everything except the first element

streak(n: int) -> bool:
 Return whether n is a dice integer in which all digits the same
 Strategy: Check if last digit is a dice integer, and matches the previous
 Call streak on everything except the last digit

reverse(s: list) -> list:
 Strategy: Get the first element into place
 Call reverse on the rest

7

Deal with one
item or digit;
recurse for the

rest

Tree recursion:
Make a SMALL

choice;
for each

choice, recurse

count_partitions(n: int, m: int) -> int:
 Return how many ways we can count to n, using pieces of up to size m
 Strategy: Use a piece of size m; recurse for the rest
 Don’t use any pieces of size m; recurse for the rest

Recursion and Strings

Spring 2023 Midterm 2 Question 5(a) [modified a bit]
Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement count_park, which returns the number of ways that vehicles can be parked in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

9

def count_park(n):
 """Count the ways to park cars and motorcycles in n adjacent spots.
 >>> count_park(1) # '.' or '%'
 2
 >>> count_park(2) # '..', '.%', '%.', '%%', or '<>'
 5
 >>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """

We haven’t parked anything yet. What’s a first decision we can make?

Spring 2023 Midterm 2 Question 5(a) [modified a bit]

10

(Haven’t parked anything)3 spaces
left

2 spaces
left

1 space
left

 %

 .

 <>

count_park(n-1) count_park(n-1)

count_park(n-2)

Choice: how do
we fill the
first space?

Spring 2023 Midterm 2 Question 5(a) [modified a bit]
Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement count_park, which returns the number of ways that vehicles can be parked in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

11

def count_park(n):
 """Count the ways to park cars and motorcycles in n adjacent spots.
 >>> count_park(1) # '.' or '%'
 2
 >>> count_park(2) # '..', '.%', '%.', '%%', or '<>'
 5
 >>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """
 if n < 0:
 return ____________
 elif n == 0:
 return ____________
 else:
 return __ count_park(n-1) + count_park(n-1) + count_park(n-2)

count_park(3):
%%%
%%.
%.%
%..
%<>
.%%
.%.
..%
...
.<>
<>%
<>.

One way to think about these base cases:
which recursive calls lead to these cases,

and what should their values be?

Spring 2023 Midterm 2 Question 5(a) [modified a bit]

12

(Haven’t parked anything)3 spaces
left

2 spaces
left

1 space
left

0 spaces
left

-1 spaces
left

 %

 .

 <> %% %.

 %<>

(Omitted for
brevity)

 <>% <>.

 <><>

count_park(n-1) count_park(n-1)

count_park(n-2)

 %%<>

 %%. %%%

 %.<>

 %.. %.%
What choices
did we make?
motorcycle
motorcycle
motorcycle

Choice: how do
we fill the
first space?

Spring 2023 Midterm 2 Question 5(a) [modified a bit]
Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement count_park, which returns the number of ways that vehicles can be parked in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

13

def count_park(n):
 """Count the ways to park cars and motorcycles in n adjacent spots.
 >>> count_park(1) # '.' or '%'
 2
 >>> count_park(2) # '..', '.%', '%.', '%%', or '<>'
 5
 >>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """
 if n < 0:
 return ____________
 elif n == 0:
 return ____________
 else:
 return __ count_park(n-1) + count_park(n-1) + count_park(n-2)

0

1

count_park(3):
%%%
%%.
%.%
%..
%<>
.%%
.%.
..%
...
.<>
<>%
<>.

One way to think about these base cases:
which recursive calls lead to these cases,

and what should their values be?

Recursion so far
double_eights(s: list[int]) -> bool:
 Strategy: Check if the first two elements are both 8s
 Call double_eights on everything except the first element

streak(n: int) -> bool:
 Return whether n is a dice integer in which all digits the same
 Strategy: Check if last digit is a dice integer, and matches the previous
 Call streak on everything except the last digit

reverse(s: list) -> list:
 Strategy: Get the first element into place
 Call reverse on the rest

14

Deal with one
item or digit;
recurse for the

rest

Tree recursion:
Make a SMALL

choice; recurse

count_partitions(n: int, m: int) -> int:
 Return how many ways we can count to n, using pieces of up to size m
 Strategy: Use a piece of size m; recurse for the rest
 Don’t use any pieces of size m; recurse for the rest

park(n: int) -> int: Return the ways to park in n adjacent spots
 Strategy: Use a motorcycle; recurse for the rest
 Use nothing; recurse for the rest
 Use a car; recurse for the rest

Quick Review: Adding Lists & Strings

>>> x = 'cal'
>>> y = 'bears'
>>> u = [x]
>>> v = [y]

>>> x + y
'calbears'

>>> u + v
['cal', 'bears']

>>> ['go ' + x for x in [x, y]]
['go cal', 'go bears']

15

>>>['cal' + x for x in s]

What s will result in ['cal']?

What s will result in []?
pollev.com/cs61a

https://www.polleverywhere.com/multiple_choice_polls/3MmLBLbHpNL56gpEuPAhH?preview=true&controls=none

Spring 2023 Midterm 2 Question 5(b) [modified a lot]

16

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement park, which returns a list of all the ways, represented as strings, that vehicles
can be parked in n adjacent parking spots for positive integer n. Spots can be empty.

def park(n):
 """Return the ways to park cars and motorcycles in n adjacent spots.
 >>> park(1)
 ['%', '.']
 >>> park(2)
 ['%%', '%.', '.%', '..', '<>']
 >>> len(park(4)) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """
 if n < 0:
 return _______
 elif n == 0:
 return _______
 else:
 return __

[]

['']

['%'+s for s in park(n-1)] + ['.'+s for s in park(n-1)] + ['<>'+s for s in park(n-2)]

park(3):
%%%
%%.
%.%
%..
%<>
.%%
.%.
..%
...
.<>
<>%
<>.

 motorcycle first + nothing first + car first

park(2)

Discussion 4

Max Product

Write a function that takes in a list and returns the maximum product that can be formed
using non-consecutive elements of the list. All numbers in the input list are greater than
or equal to 1.

def max_product(s):
 """Return the maximum product that can be
 formed using non-consecutive elements of s.

 >>> max_product([10, 3, 1, 9, 2]) # 10 * 9
 90
 >>> max_product([5, 10, 5, 10, 5]) # 5 * 5 * 5
 125
 >>> max_product([])
 1
 """
 if len(s) == 0:
 return 1
 elif len(s) == 1:
 return s[0]
 else:
 return ___

18

max(s[0] * max_product(s[2:]), max_product(s[1:]))

What choices did we make?

Use the 10
Don’t use the 1

Use the 9

[10, 3, 1, 9, 2]

Use 10 Don’t use 10

max_product([1, 9, 2] max_product([3, 1, 9, 2]

max(10 * max_product([1, 9, 2]), max_product([3, 1, 9, 2])

Choice: What should
we start with?

Sum Fun

Implement sums(n, m), which takes a total n and maximum m. It returns a list of all lists:
• that sum to n,
• that contain only positive numbers up to m, and
• in which no two adjacent numbers are the same.

>>> sums(5, 3)
[[1, 3, 1], [2, 1, 2], [2, 3], [3, 2]]
>>> sums(5, 5)
[[1, 3, 1], [1, 4], [2, 1, 2], [2, 3], [3, 2], [4, 1], [5]]

def sums(n, m):
 if n < 0:
 return []
 if n == 0:
 sums_to_zero = [] # The only way to sum to zero using positives
 return [sums_to_zero] # Return a list of all the ways to sum to zero
 result = []
 for k in range(1, m + 1):
 result = result + [__________ for rest in ___________ if rest == [] or ____________]
 return result

19

[k]+rest sums(n-k,m) k != rest[0]

Start with a 1 Start with a 2

Start
with a

3

Start
with a

4

Start with a 5

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

• How data are represented (as some underlying list, dictionary, etc.)

• How data are manipulated (as whole values with named parts)

21

E.g., refer to the parts of a line (affine function) called f:

• slope(f) instead of f[0] or f['slope']

• y_intercept(f) instead of f[1] or f['y_intercept']

Why? Code becomes easier to read & revise.

(Demo)

