Data Abstraction

Announcements

Dictionaries

1'Dem': 0}

Dictionary Comprehensions

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

Example: Multiples

Implement multiples, which takes two lists of positive numbers s and factors. It returns a
dictionary 1in which each element of factors 1s a key, and the value for each key 1s a list
of the elements of s that are multiples of the key.

def multiples(s, factors):
"""Create a dictionary where each factor 1s a key and each value
1s the elements of s that are multiples of the Kkey.

>>> multiples([3, 4, 5, 6, 7, 81, [2, 31)
{2: [4, 6, 8], 3: [3, 6]}
>>> multiples(I[1, 2, 3, 4, 51, [2, 5, 81)
12: [2, 4], 5: [5], 8: []}

return {d: [x for x in S if X % d==07 for ¢ in factorsy

Recursion

Recursion so far

D i i e R e e R R e e e e e i i e e e e i e e e i i e e i B

double eights(s: list[int]) —> bool:
Strategy: Check if the first two elements are both 8s
Call double_eights on everything except the first element

streak(n: int) —> bool:
Return whether n 1s a dice integer 1in which all digits the same

Strategy: Check if last digit is a dice integer, and matches the previous f

Call streak on everything except the last digit

reverse(s: 1list) —> list:
Strategy: Get the first element into place
Call reverse on the rest

--

. count_partitions(n: int, m: int) —> int:
' Return how many ways we can count to n, using pieces of up to size m

Strategy: Use a piece of size m; recurse for the rest
Don’t use any pieces of size m; recurse for the rest

--

Deal with one

» item or digit;

recurse for the
rest

Tree recursion:
Make a SMALL
choice;
for each
choice, recurse

Recursion and Strings

Spring 2023 Midterm 2 Question 5(a) [modified a bit]

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement count_park, which returns the number of ways that vehicles can be parked 1in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

def count _park(n):
"""Count the ways to park cars and motorcycles in n adjacent spots.

>>> count_park(1l) # '.' or 'S'

2

>>> count_park(2) # '..', '.%', '%.', '%%', or '<>'

5

>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
29

We haven’t parked anything yet. What’s a first decision we can make?

Spring 2023 Midterm 2 Question 5(a) [modified a bit]

X Choice: how do
spaces we fill the (Haven't k |
parked anything)
left \ fiFSf/iiiiii/:zzzszii///\\\\\
2 igiies count_park(n-1) S5 count_park(n-1) ,
1 space

Left count_park(n-2) <>

Spring 2023 Midterm 2 Question 5(a) [modified a bit]

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement count_park, which returns the number of ways that vehicles can be parked 1in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

def count park(n):

"""Count the ways to park cars and motorcycles in n adjacent spots.

>>> count_park(1l) # '.' or 's' count_park(3):
% %%%s
>>> count_park(2) # '..', '.%', '%.', '%%', or '<>' %% .
5 %« %
>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>! % s
29 %B<>
ifn<o: One way to think about these base cases: :%_
return which recursive calls lead to these cases, o
elif n == 0 <; and what should their values be? .
return . <>
else: <>%
return count_park(n-1) + count_park(n-1) + count_park(n-2) -

Spring 2023 Midterm 2 Question 5(a) [modified a bit]

3 spaces
left

2 spaces
left

1 space
left

@ spaces
left

-1 spaces
left

0
count_park(n-1) =g

(Choice: how do\

we fill the

What choices
did we make?
motorcycl
motorcycl

motorcycl

e
e
e

o\

(Omitted for

B>

<>

/N

brevity)

(Haven’'t parked anything)

\ firsf/iiiiii/izzzszi///\\\\

count_park(n-1)

count_park(n-2) <>

7

<>% <>,

<><>

Spring 2023 Midterm 2 Question 5(a) [modified a bit]

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement count_park, which returns the number of ways that vehicles can be parked 1in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

def count park(n):

"""Count the ways to park cars and motorcycles in n adjacent spots.

>>> count_park(1l) # '.' or 's' count_park(3):
% %%%s
>>> count_park(2) # '..', '.%', '%.', '%%', or '<>' %% .
> % . %
>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<> % s
29 H<>
ifn<0: One way to think about these base cases: :%_
return 0 which recursive calls lead to these cases, o
elif n == 0 <; and what should their values be? .
return 1 <>
else: <>%
~etyrn count_park(n-1) + count_park(n-1) + count_park(n-2) -

Recursion so far

--

" double_eights(s: list[int]) -> bool:
’ Strategy: Check 1if the first two elements are both 8s
Call double_eights on everything except the first element

streak(n: int) —> bool: \\x Bfal WlEp qﬂi
Return whether n is a dice integer in which all digits the same A Orf 191thr
Strategy: Check if last digit is a dice integer, and matches the previous - recuriiﬁ”?r €

Call streak on everything except the last digit

reverse(s: list) —> list:
Strategy: Get the first element into place
Call reverse on the rest

--

--

' count_partitions(n: int, m: int) -> int: .

' Return how many ways we can count to n, using pieces of up to size m *\~ Tree recursion:

Strategy: Use a piece of size m; recurse for the rest . Make a SMALL
Don’t use any pieces of size m; recurse for the rest e choice: recurse

- park(n: int) -> int: Return the ways to park in n adjacent spots
. Strategy: Use a motorcycle; recurse for the rest

Use nothing; recurse for the rest

Use a car; recurse for the rest

--

Quick Review: Adding Lists & Strings

>>> X = 'cal'
>>> y = 'bears’
>>> y = [X]

>>> v = [y]

>>> X + Y
'calbears’

>>> U + V
['cal', 'bears']

>>> ['go ' + x for x in [x, yll
['go cal', 'go bears']
>>>['cal' + x for x in s]

What s will result in ['cal']?

What s will result in []7?

pollev.com/cs61a

https://www.polleverywhere.com/multiple_choice_polls/3MmLBLbHpNL56gpEuPAhH?preview=true&controls=none

Spring 2023 Midterm 2 Question 5(b) [modified a lot]

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement park, which returns a list of all the ways, represented as strings, that vehicles
can be parked in n adjacent parking spots for positive integer n. Spots can be empty.

def park(n): park(3):

"""Return the ways to park cars and motorcycles in n adjacent spots. ofey | T
>>> park(1) %%.5 B E
['%', '.'] o 9 L. park(2) :
>>> park(2) %__5 i :
['%%', '%.', '".%', '..', '<>'] S
>>> len(park(4)) # some examples: '<><>', '.%%.', '%<>%', '%.<>' o0
29 .%.
if n < 0: 3 o

return <>
elif n == 0: L <>%

return [] <>
else:

return ['%'+s for s in park(n-1)] + ['.'+s for s in park(n-1)] + ['<>'+s for s in park(n-2)]

motorcycle first + nothing first + car first

Discussion 4

Max Product

Write a function that takes in a list and returns the maximum product that can be formed
using non-consecutive elements of the list. ALl numbers 1in the input list are greater than
or equal to 1.

def max_product(s): - . ,
"""Return the maximum product that can be What choices did we make?
formed using non-consecutive elements of s.

~

Use the 10
>>> max_product([10, 3, 1, 9, 2]) # 10 x 9 Don’t use the 1
90 Use the 9

>>> max_product([5, 10, 5, 10, 5]) # 5 % 5 % 5

125
>>> max_product([]) 10, 3, 1, 9, 2]

1
NI USE/EQ////////\\\\\\QSh’t use 10
if len(s) == 0:

return 1 max_product([1, 9, 2] max_product([3, 1, 9, 2]
elif len(s) == 1. max (1@ * max_product([1, 9, 2]), max_product([3, 1, 9, 2])
return s[0]
else:

return max(s[@] *x max_product(s[2:]), max_product(s[1:]))

Sum Fun

Implement sums(n, m), which takes a total n and maximum m. It returns a list of all lists:
 that sum to n,

- that contain only positive numbers up to m, and

- 1n which no two adjacent numbers are the same.

4 N\ [)
Start Start
>>> sums (5, 3) with a || with a
[, 3, 11, 2, 1, 21, [2, 3], [3, 2]] 3 4
>>> sums.(5,.5). .. e R Vst Vst
(1, 3, 11, I[1, 41,302, 1, 21, [2, 31,:i[3, 21,iil4, 1]; i[5]]
2 Ly Ly Flanley ta gl Ley il fd 0Ty 1)l -
def sums(n, m): (SAtart with a 1)(Atart with a 2] (Start with a 5)
if n < 0:
return []
1f n == 0:
sums_to _zero = [] # The only way to sum to zero using positives
return [sums_to_zero] # Return a list of all the ways to sum to zero
result = []
for k_in range(l m+ 1):
res result + [LKltrest o regt in sums(n-k,m) ¢ regt == [] or k !'= restl0];

return resu

Choice: What should
L we start with?

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

How data are represented (as some underlying list, dictionary, etc.)

How data are manipulated (as whole values with named parts)

E.g., refer to the parts of a line (affine function) called f:
-slope(f) instead of f[0] or f['slope'l
-y _intercept(f) instead of f[1l] or fl'y_ intercept']

Why? Code becomes easier to read & revise.

(Demo)

