Objects and Attributes

Announcements

Class Statements

Classes

A class describes the behavior of 1ts instances

Idea: ALl bank accounts have a balance and

>>> g = Account('John')

balance and
holder are
attributes

~

J

withdraw are
methods

J

an account holder; the Account class should >>> a.holder ——
add those attributes to each newly created 'John’
1nstance >>> a.balance

0 N

. ' deposit and

Idea: ALl bank accounts share a withdraw ;;> 2+ deposit{is) </r |
method and a deposit method ~~> a.withdraw(10) .

5

>>> a.balance

5

>>> g.withdraw(10)
'Insufficient funds'

The Account Class
class Account:

(__init__ 1s a special method name for the function that constructs an Account instancej

def init (self, account holder):
self.balance = 0
self.holder = account_holder

(: self is the instance of the Account class on which deposit was invoked: a.deposit(10) :)

\/
def deposit(self, amount): >>> g = Account('John')
self.balance = self.balance + amount >>> a.holder
return self.balance 'John'
def withdraw(self, amount): >>> g.balance
1T amount > self.balance: 0
return 'Insufficient funds' >>> a.deposit(15)
self.balance = self.balance - amount 15
return self.balance >>> a.withdraw(10)
5
>>> a.balance
Methods are functions defined in a class statement 5

>>> g.withdraw(10)
(Demo) 'Insufficient funds'

Practice Question: Create Many Accounts

Write a function create that takes a list of strings called names. It returns a dictionary
in which each name 1s a key, and its value 1is a new Account with that name as the holder.
Deposit $5 1n each account before returning.

def create(names):
"""Creates a dictionary of accounts, each with an initial deposit of 5.

>>> accounts = create(['Alice', 'Bob', 'Charlie'])
>>> gccounts['Alice'].holder

'Alice’

>>> gccounts['Bob'].balance

5

>>> accounts['Charlie'].deposit(10)

15

result = 1name: Account(name) for name in names}

for a 1n FESUItnvaIUES():
a.deposit(5)

return result

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression
The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that 1s the value of the <expression>

Functions vs Bound Methods

(Demo)

Classes as Values

(Demo)

Break: 5 minutes

Attribute Lookup

Looking Up Attributes by Name

Both i1nstances and classes have attributes that can be looked up by dot expressions

<expression> . <name>

To evaluate a dot expression:

1.

Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

<name> 1S matched against the instance attributes of that object; if an
attribute with that name exists, 1ts value 1s returned

IT not, <name> 1s looked up in the class, which yields a class attribute value

That value 1s returned unless 1t 1s a function, 1in which case a bound method 1is
returned instead

(Demo)

Practice Question: Where's Waldo?

For each class, write an expression with no quotes or + that evaluates to 'Waldo'

class Town:
def init (self, w, aldo): >>> Town(1, 7).street[2]
1T aldo == 7: Waldo

self.street = {self.f(w): 'Waldo'}

def f(self, x):
return x + 1

class Beach: Reminder: s.pop (k) >>> Beach().walk(@).wave(0)
def __init_ (self): removes and returns ‘Waldo'

sand = ['Wal’, 'do'] the item at index k
self.dig = sand.pop <

def walk(self, x):
self.wave = lambda y: self.dig(x) + self.dig(y)
return self

Class Attributes

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the i1instance

class Account:
interest = 0.02 # A class attribute

def init (self, account holder):

self.balance = 0
self.holder = account_holder

Additional methods would be defined here

>>> tom_account = Account('Tom')

>>> jim_account = Account('Jim')

>>> tom_account.interest A
0.02 The interest attribute is not part of

>>> jim_account.interest the instance; it's part of the class!
0.02 \ J

Attribute Assignment Statements

p
Account class j> interest: 9%02 0204 0.05

. attributes (withdraw, deposit, __ init_)

4 4
Instance ‘¥>> balance: 0 Instance ‘¥:> balance: 0
attributes of holder: 'Jim’ attributes of holder: '"Tom'
jim_account lnterest: 0.08 tom_account
\§ J \§ J
SSS jim_account — Account('Jim') >>> j%m_aCCOunt.%ntGFESt — 0-@8
>>> tom account = Account('Tom") >>> jlm_account.1nterest
>>> tom_account.interest 0.038
0.02 >>> tom_account.1interest
>>> jim_account.interest 0.04 |
0.02 >>> Account.1lnterest = 0.05
~>> Account.interest = 0.04 >>> tom_account.interest
>>> tom account.interest 0.05
0.04 >>> j1m_account.interest
>>> jim_account.interest 0.08
0.04

Practice Question: Class Attribute Assignment

Implement the Place class, which takes a name. Its print_history() method prints the name
of the Place and then the names of all the Place instances that were created before 1it.

class Place:

-
last = None

def _1init (self, n):

self.name = n /-

OK to write
self.last or

type(self.last)

~

)

self.then = Place. last

Place. last = gelf
A

[Not ok to write self.last]

def print_history(self):

print(self.name)

if self.then jis not None:
self.then.print_history()

>>> places = [Place(x*2) for x in range(10)]
>>> places[4].print_history()

8

o

4

2

0

>>> places[6].print_history()

12

10

SN B OO

