
Objects and Attributes

Announcements

Class Statements

Classes

A class describes the behavior of its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Idea: All bank accounts share a withdraw
method and a deposit method

4

balance and
holder are
attributes

deposit and
withdraw are

methods

The Account Class

Methods are functions defined in a class statement

class Account:

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

5

self is the instance of the Account class on which deposit was invoked: a.deposit(10)

__init__ is a special method name for the function that constructs an Account instance

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0
>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'(Demo)

Practice Question: Create Many Accounts

Write a function create that takes a list of strings called names. It returns a dictionary
in which each name is a key, and its value is a new Account with that name as the holder.
Deposit $5 in each account before returning.

6

def create(names):
 """Creates a dictionary of accounts, each with an initial deposit of 5.

 >>> accounts = create(['Alice', 'Bob', 'Charlie'])
 >>> accounts['Alice'].holder
 'Alice'
 >>> accounts['Bob'].balance
 5
 >>> accounts['Charlie'].deposit(10)
 15
 """
 result = ___
 for a in ________________:

 return result

{name: Account(name) for name in names}
result.values()

a.deposit(5)

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

Dot expression
Call expression

8

(Demo)

Functions vs Bound Methods

(Demo)

Classes as Values

(Demo)

Break: 5 minutes

Attribute Lookup

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

13

Both instances and classes have attributes that can be looked up by dot expressions

(Demo)

Practice Question: Where's Waldo?

For each class, write an expression with no quotes or + that evaluates to 'Waldo'

14

class Beach:
 def __init__(self):
 sand = ['Wal', 'do']
 self.dig = sand.pop

 def walk(self, x):
 self.wave = lambda y: self.dig(x) + self.dig(y)
 return self

>>> Town(1, 7).street[2]
'Waldo'

>>> Beach().walk(0).wave(0)
'Waldo'

Reminder: s.pop(k)
removes and returns
the item at index k

class Town:
 def __init__(self, w, aldo):
 if aldo == 7:
 self.street = {self.f(w): 'Waldo'}

 def f(self, x):
 return x + 1

Class Attributes

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

16

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

17

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Practice Question: Class Attribute Assignment

class Place:

 last = None

 def __init__(self, n):

 self.name = n

 self.then = ___________

 ___________ = self

 def print_history(self):

 print(self.name)

 if __________ is not None:

18

>>> places = [Place(x*2) for x in range(10)]
>>> places[4].print_history()
8
6
4
2
0
>>> places[6].print_history()
12
10
8
6
4
2
0

Implement the Place class, which takes a name. Its print_history() method prints the name
of the Place and then the names of all the Place instances that were created before it.

Place.last

OK to write
self.last or

type(self.last)

Not ok to write self.last

Place.last

self.then.print_history()
self.then

