
Inheritance and String Representation

Announcements

Attribute Lookup Practice

Class Attributes
A class attribute can be accessed from either an instance or its class. There is only one
value for a class attribute, regardless of how many instances.

4

class Transaction:
 """A logged transaction.

 >>> s = [20, -3, -4]
 >>> ts = [Transaction(x) for x in s]
 >>> ts[1].balance()
 17
 >>> ts[2].balance()
 13
 """
 log = []

 def __init__(self, amount):
 self.amount = amount
 self.prior = _______________ # a list of Transactions
 self.log.append(self)

 def balance(self):
 """The sum of amounts for this transaction and all prior transactions"""
 return self.amount + sum(_______________________________)

Equivalently: list(type(self).log) or list(Transaction.log)

amount: -3
prior:

Transaction instance

amount: -4
prior:

Transaction instance

amount: 20
prior:

Transaction instance

empty list

log:
...

Transaction class List

Always bound to some
Transaction instance

list(self.log)

[t.amount for t in self.prior]

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> tom_account.balance
10

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

•One of its instance attributes, or

•One of the attributes of its class

5

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

(Demo)

Example: Close Friends
class Friend:
 def __init__(self, name):
 self.name = name
 self.heard_from = {}

 def hear_from(self, friend):
 if friend not in self.heard_from:
 self.heard_from[friend] = 0
 self.heard_from[friend] += 1
 friend.just_messaged = self

 def how_close(self, friend):
 bonus = 0

 if ______________________________ and ______________________________:
 bonus = 3

 return ______________________________ + bonus

 def closest(self, friends):

 return max(friends, key=______________________________)
6

hasattr(self, 'just_messaged') self.just_messaged is friend

friend.heard_from.get(self, 0)

A Friend instance tracks the number of times they
hear_from each other friend.
A Friend just_messaged the friend that most recently
heard from them.
how_close is one Friend (self) to another (friend)?
• The number of times friend has heard from self
• Plus a bonus of 3 if they are the one that most
recently heard from self

self's closest friend among a list of friends is the
one with the largest self.how_close(friend) value

self.how_close

Inheritance

or
 return super().withdraw(amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

8

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

9

Example: Three Attributes

class A:
 x, y, z = 0, 1, 2

 def f(self):
 return [self.x, self.y, self.z]

class B(A):
 """What would Python Do?

 >>> A().f()

 [0, 1, 2]

 >>> B().f()

 """
 x = 6
 def __init__(self):
 self.z = 'A'

10

[6, 1, 'A']

x: 0
y: 1

A class

z: 2

x: 6
B class

z: 'A'
B instance

A instance

Break: 5 minutes

String Representations

String Representations

In Python, all objects produce two string representations:

• The str is (often) legible to humans & shows up when you print

• The repr is (often) legible to Python & shows up when you evaluate interactively

The str and repr strings are often the same, but not always

13

(Demo)

If a type only defines a repr string, then the repr string is also the str string.

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> str(half)
'1/2'
>>> repr(half)
'Fraction(1, 2)'
>>> print(half)
1/2
>>> half
Fraction(1, 2)

Class Practice

Spring 2023 Midterm 2 Question 2(a)
class Letter:
 def __init__(self, contents):

 self.contents = contents

 def send(self):

 if self.sent:

 print(self, 'was already sent.')

 else:
 print(self, 'has been sent.')

 return _____________________________

 def __repr__(self):
 return self.contents

15

 """A letter receives an all-caps reply.

 >>> hi = Letter('Hello, World!')
 >>> hi.send()
 Hello, World! has been sent.
 HELLO, WORLD!
 >>> hi.send()
 Hello, World! was already sent.
 >>> Letter('Hey').send().send()
 Hey has been sent.
 HEY has been sent.
 HEY
 """

Implement the Letter class. A Letter has two
instance attributes: contents (a str) and sent
(a bool). Each Letter can only be sent once.
The send method prints whether the letter was
sent, and if it was, returns the reply, which
is a new Letter instance with the same
contents, but in all caps.
Hint: 'hi'.upper() evaluates to 'HI'.

self.sent = False

self.sent = True

Letter(self.contents.upper())

Spring 2023 Midterm 2 Question 2(b)

class Numbered(Letter):

 number = 0

 def __init__(self, contents):

 super().__init__(contents)

 def __repr__(self):

 return '#' + ___________________

16

 """A numbered letter has a different
 repr method that shows its number.

 >>> hey = Numbered('Hello, World!')
 >>> hey.send()
 #0 has been sent.
 HELLO, WORLD!
 >>> Numbered('Hi!').send()
 #1 has been sent.
 HI!
 >>> hey
 #0
 """

Implement the Numbered class. A Numbered letter
has a number attribute equal to how many
numbered letters have previously been
constructed. This number appears in its repr
string. Assume Letter is implemented correctly.

self.number = Numbered.number

Numbered.number += 1

str(self.number)

