
Trees

Announcements

Trees

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node

Using the Tree Abstraction

For a tree t, you can only:

•Get the label for the root of the tree: label(t)

•Get the list of branches for the tree: branches(t)

•Get the branch at index i, which is a tree: branches(t)[0]

•Determine whether the tree is a leaf: is_leaf(t)

•Treat t as a value: return t, f(t), [t], s = t, etc.

5

(Demo)

2

1 1

0 1

An example tree t:

[],

Tree Processing

Writing Recursive Functions

Make sure you can answer the following before you start writing code:

• What small initial choice can I make?
• For trees, often: which branch to explore?

• What recursive call for each option?

• How can you combine the results of those recursive calls?
• What type of values do they return?
• What do the possible return values mean?
• How can you use those return values to complete your implementation? E.g.,

• Look to see if any option evaluated to true
• Add up the results from each option

7

Tree Processing Uses Recursion

8

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

 return sum(branch_counts)

Small, initial choice:

Recursive call for each option:

Combine results:

 What type of values do they return?
 What do the possible return values mean?
 How can you use those return values to complete your implementation?

Processing a
leaf is often
the base case

which branch’s leaves to count?

for each branch b, count_leaves(b)

add up all of the counts
Number of leaves

on branch b

Example: Largest Label

9

def largest_label(t):

 """Return the largest label in tree t."""

 if is_leaf(t):

 return __________

 else:

 return ____([_________________ for b in branches(t)] + ___________)

label(t)

max [label(t)]largest_label(b)

Small, initial choice:

Recursive call for each option:

Combine results:

 What type of values do they return?
 What do the possible return values mean?
 How can you use those return values to complete your implementation?

What would
happen if we got

rid of this?

which branch to look for the largest label on?

for each branch b, largest_label(b) A label that’s
the largest one
from branch bReturn the largest of

these, and the root label

Tree Implementation

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

Implementing the Tree Abstraction

12

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Example: Above Root

13

def above_root(t):

 """Print all the labels of t that are larger than the root label."""

 def process(u):

 if ____________________:

 print(_________)

 for b in branches(__):

 process(b)

 process(t)

label(u) > label(t)

label(u)

u

Small, initial choice:

Recursive call for each option:

Combine results:

Which branch to look at for labels to print?

For each branch b, process(b)

Don’t need to combine the recursive return call!
Do need to print this label, if it’s larger than the root

Min Practice

Example: Minimum x

Given these two related lists of the same length:

xs = list(range(-10, 11))
Write an expression that evaluates to the x in xs for which x*x - 2*x + 1 is smallest:

15

>>> xs
[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> [x*x - 2*x + 1 for x in xs]
[121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> ... some expression involving min ...
1

