
Generators

Announcements

Review: Iterables, Iterators

An iterable is any sequence we can iterate over (we can call iter() on it and get an iterator)

An iterator allows us to iterate over any iterable sequence (we can call next() on it and get
the next item in the sequence)

t = (1,2,3)
i = iter(t)
next(i)

l = ["John", "Jedi", "Shm"]
e = enumerate(l)
next(e)

d = {"apples": 1, "pears": 2}
m = map(lambda x: "yummy “ + x, d)
next(m)

other iterators:

zip(), filter(), reversed()

l = [2, 4, 6, 8]

doubler

4 8 12 16

doubler = map(double, l)

next(doubler)

def double(x):
 print(f"*** doubling {x} ***")
 return x*2

Map Function Review

map(func, iterable) applies a given function to each item of an iterable

map() Practice

5

def add_to_each(p, edit):
 """

Given a list, p, of 3-element tuples: [(x1, y1, z1), (x2, y2, z2), ...]
And an edit tuple (also 3 elements) = (a, b, c),
return a map object where
a is added to each x-value,
b to each y-value, and
c to each z-value.

>>> list(add_to_each([(0, 0, 0), (1, 1, 1)], (10, 10, 10)))
 [(10, 10, 10), (11, 11, 11)]
>>> list(add_to_each([(1, 2, 3), (1, 1, 1)], (10, 20, 30)))
 [(11, 22, 33), (11, 21, 31)]

 “""
 return map(lambda x: (x[0] + edit[0], x[1] + edit[1], x[2] + edit[2]), p) x[0] + edit[0], x[1] + edit[1], x[2] + edit[2]

Tree Practice

Spring 2023 Midterm 2 Question 4(a)
Implement exclude, which takes a tree t and a value x. It returns a tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a
node in the result is its nearest ancestor node that is not excluded.

7

def exclude(t, x):
 """Return a tree with the non-root nodes of tree t labeled anything but x.

 >>> t = tree(1, [tree(2, [tree(2), tree(3), tree(4)]), tree(5, [tree(1)])])
 >>> exclude(t, 2)
 [1, [3], [4], [5, [1]]]
 >>> exclude(t, 1) # The root node cannot be excluded
 [1, [2, [2], [3], [4]], [5]]
 """
 filtered_branches = map(lambda y: _______________, branches(t))
 bs = []
 for b in filtered_branches:

 if ________________:

 bs.________(______________)
 else:
 bs.append(b)
 return tree(label(t), bs)

exclude(y, x)

label(b) == x

extend

1

2 5

12 43

In Spring 2023,
20% of students
got this right

37% of students
got this right

30% got
it right;
1 of 4
options

branches(b) 24% got
it right

2 5

12 43

2 5

12 3

1

4

Generators

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

9

(Demo)

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Spring 2023 Midterm 2 Question 5(b)

10

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement park, a generator function that yields all the ways, represented as strings, that
vehicles can be parked in n adjacent parking spots for positive integer n.

def park(n):
 """Yield the ways to park cars and motorcycles in n adjacent spots.

 >>> sorted(park(1))
 ['%', '.']
 >>> sorted(park(2))
 ['%%', '%.', '.%', '..', '<>']
 >>> len(list(park(4))) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """

Fibonacci Generator

11

def fib_generator():
 """
 A generator that yields the Fibonacci sequence indefinitely.
 (The Fibonacci sequence starts with 0 and 1, and each subsequent number
 is the sum of the previous two.)

 >>> fib = fib_generator()
 >>> next(fib)
 0
 >>> next(fib)
 1
 >>> next(fib)
 1
 >>> next(fib)
 2
 >>> list(next(fib) for i in range(0,10)) # list the next 10 fibonacci numbers
 [3, 5, 8, 13, 21, 34, 55, 89, 144, 233]
 """
 a, b = 0, 1
 while True:
 yield a # Yield the current Fibonacci number
 a, b = b, a + b # Prepare the next Fibonacci numbers

 yield a
a, b = b, a + b

