
Efficiency

Announcements / Mid-Sem Feedback Preview

Efficiency

Efficiency

A measure of how much resource consumption a computational task takes.

An analysis of computer programs rather than a technique for writing them.

In computer science, we are concerned with time and space efficiency.

The time efficiency of could determine how long a user has to wait for a webpage to load.

The space efficiency of your algorithm could determine how much memory running your
application takes.

We are going down a layer of abstraction – opening up the black box.

4

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

6

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

8

(Demo)

Memoized Tree Recursion

9

Call to fib

Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Orders of Growth

Common Orders of Growth

11

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

Order of Growth Practice

Match each function to its order of growth

13

Exponential growth. E.g., recursive fib
Incrementing n multiplies time by a constant
b ** n

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.
Incrementing n increases time by n times a constant
n ** 2

Incrementing n increases time by a constant

Definition. A prefix sum of a
sequence of numbers is the sum of
the first n elements for some
positive length n.

(1 pt) What is the order of growth
of the time to run prefix(s) in
terms of the length of s? Assume
append and + take one step.

def prefix(s):
 """Return a list of all prefix
 sums of list s.
 """
 t = 0
 result = []
 for x in s:
 t = t + x
 result.append(t)
 return result
1 + 1 + (len(s) * 2) + 1
n := len(s)
cost(prefix) = 3 + 2n

Match each function to its order of growth

14

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

def max_sum(s):
 """Return the largest sum of a contiguous
 subsequence of s.
 >>> max_sum([3, 5, -12, 2, -4, 4, -1, 4, 2, 2])
 11
 """
 largest = 0
 for i in range(len(s)):
 total = 0
 for j in range(i, len(s)):
 total += s[j]
 largest = max(largest, total)
 return largest

0 1 2 3 4 5

0

1

2

3

4

5

6

Match each function to its order of growth

15

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

def max_sum(s):
 """Return the largest sum of a contiguous
 subsequence of s.
 >>> max_sum([3, 5, -12, 2, -4, 4, -1, 4, 2, 2])
 11
 """
 largest = 0
 for i in range(len(s)):
 total = 0
 for j in range(i, len(s)):
 total += s[j]
 largest = max(largest, total)
 return largest

Mathematical Approach:

Sum of first n positive integers is

S_n = (n(n+1)) / 2

Expression for counting number of
operations is quadratic with
respect to `n`.

Visualizing Function Efficiency

(Demo)

More Linked Lists Practice

Recursion and Iteration

18

def length(s):
 """The number of elements in s.

 >>> length(Link(3, Link(4, Link(5))))
 3
 """

 if s is Link.empty:

 return 0

 else:

 return __________________________

def length(s):
 """The number of elements in s.

 >>> length(Link(3, Link(4, Link(5))))
 3
 """

 k = ____

 while _____________________:

 s, k = s.rest, _________

 return k1 + length(s.rest)

0

s is not Link.empty

k + 1

Many linked list processing functions can be written both iteratively and recursively

Recursive approach:
• What recursive call do you make?
• What does this recursive call do/return?
• How is this result useful in solving the
problem?

Iterative approach:
• Describe a process that solves the problem.
• Figure out what additional names you need
to carry out this process.

• Implement the process using those names.

Constructing a Linked List

Build the rest of the linked list, then combine it with the first element.

19

3 4 5

def range_link(start, end):
 """Return a Link containing consecutive
 integers from start up to end.

 >>> range_link(3, 6)
 Link(3, Link(4, Link(5)))
 """

 if start >= end:

 return Link.empty

 else:

 return ___

def range_link(start, end):
 """Return a Link containing consecutive
 integers from start to end.

 >>> range_link(3, 6)
 Link(3, Link(4, Link(5)))
 """

 s = Link.empty

 k = _________

 while ___________:

 s = Link(k, s)

 return s

Link(start, range_link(start + 1, end))

end - 1

k >= start

k -= 1

s = Link.empty
s = Link(5, s)
s = Link(4, s)
s = Link(3, s)

Linked List Mutation

To change the contents of a linked list, assign to first and rest attributes

Example: Append x to the end of non-empty s

>>> t = Link(3, Link(4, Link(5)))
>>> append(t, 6)
>>> t
Link(3, Link(4, Link(5, Link(6))))

20

3 4 5

Global Frame

t

f1: append p=G

s

x 6

6

s = s.rest

s.rest = Link(x)

Recursion and Iteration

Many linked list processing functions can be written both iteratively and recursively

21

Recursive approach:
• What recursive call do you make?
• What does this recursive call do/return?
• How is this result useful in solving the
problem?

def append(s, x):
 """Append x to the end of non-empty s.
 >>> append(s, 6) # returns None!
 >>> print(s)
 <3 4 5 6>
 """

 if ___________________________:

 append(_______, ____)

 else:

s.rest is not Link.empty

s.rest x

s.rest = Link(x)

Iterative approach:
• Describe a process that solves the problem.
• Figure out what additional names you need
to carry out this process.

• Implement the process using those names.

def append(s, x):
 """Append x to the end of non-empty s.
 >>> append(s, 6) # returns None!
 >>> print(s)
 <3 4 5 6>
 """

 while ____________________________:

s.rest is not Link.empty

s = s.rest

s.rest = Link(x)

3 4 5 6

Global Frame

t

f1: pop p=G

s

i

Example: Pop
Implement pop, which takes a linked list s and positive integer i. It removes and returns
the element at index i of s (assuming s.first has index 0).

22

def pop(s, i):
 """Remove and return element i from linked list s for positive i.
 >>> t = Link(3, Link(4, Link(5, Link(6))))
 >>> pop(t, 2)
 5
 >>> pop(t, 2)
 6
 >>> pop(t, 1)
 4
 >>> t
 Link(3)
 """
 assert i > 0 and i < length(s)

 for x in range(_______):

 s = s.rest

 return _____________

i - 1

result = s.rest.first

s.rest = s.rest.rest

result

2

result 5

