Efficiency

Announcements / Mid-Sem Feedback Preview

Efficiency

Efficiency

A measure of how much resource consumption a computational task takes.

An analysis of computer programs rather than a technique for writing them.

In computer science, we are concerned with time and space efficiency.

The time efficiency of could determine how long a user has to wait for a webpage to load.

The space efficiency of your algorithm could determine how much memory running your
application takes.

We are going down a layer of abstraction — opening up the black box.

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):

1f n ==
return 0

elif n ==
return 1

else:

L 4
-
"’ ~~§
’f ~§
- ~
4‘ ~
. ~
L 4 ~§
L 4
.’ S
PN ~
Py ~
P ~
Py ~ | | | |
Y ~
P ~ I
.’
P ~
P -~
t' ‘“
. . A
’ N
. e
’
P £ Y S >
4 A - [N
.’ ~ > [N
. ‘o N N
K4 ~ A ‘\
L4 ~~ 1 LN
L4 ~ 1 [N
¢ ~e N
¢ ! N
. ’ AN
.I ~. . [N
IN ‘ N
¥ [] " . 4 A
1 A 4 s~
A ¢
[] - LN
N ‘ -~
] N X4 [N
’ - -
: ‘~ s emmEEEE=eaa N,
1 . ‘¢' "~‘
., N
1 1 .
' -
IS
: LN
1
1

‘ fih (g) ’ E() f ib(2) . A fib(3)
i i P 5 - N,
L P S N g

1 ,.-"':f ib(0) fib(l)\j: Exf ib
- -

=

—h
|_I.
O
—~~
N
N—

Memoization

Memoization

Idea: Remember the results that have been computed before

N
def memo(f): Keys are arguments that
””"”"”"”{E' map to return values

J

def memoized(n):
1T n not 1n cache:
cache[n] = f(n)

return cachel[n]

v . E . ™\
returnamem01zed;<i Same behavior as f,

1f f 1s a pure function</

(Demo)

Memoized Tree Recursion

@ Call to fib
@ Found 1n cache

O Skipped

/fib(e) fib(1) " ifib(1) fib(2)

1 /L 1 fib(e) fib(1) 1

Orders of Growth

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth.

Incrementing n increases time by n times a constant

Linear growth.

Incrementing n increases time by a constant

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Order of Growth Practice

Match each function to its order of growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant
b %%k n

Quadratic growth.

Incrementing n increases time by n times a constant
n sk 2

Linear growth.

Incrementing n increases time by a constant

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Definition. A prefix sum of a
sequence of numbers is the sum of
the first n elements for some
positive length n.

(1 pt) What is the order of growth
of the time to run prefix(s) in
terms of the length of s? Assume
append and + take one step.

def prefix(s):
"HHReturn a list of all prefix
sums of list s.

t =20
result = []
for x 1n s:

t =1 + X

result.append(t)
return result
1+ 1+ (len(s) x 2) + 1
n := len(s)
cost(prefix) = 3 + 2n

Match each function to its order of growth

: : : def max_sum(s):
Exponential growth. E.g., recursive fib vReturn the largest sum of a contiguous
Incrementing n multiplies time by a constant subsequence of s.
>>> max_sum([3, 5, -12, 2, -4, 4, -1, 4, 2, 2])
11
largest = 0
Quadratic growth. for i in range(len(s)):
total = 0
Incrementing n increases time by n times a constant for j in range(i, len(s)):

total += s[j]
largest = max(largest, total)
return largest

Linear growth.

Incrementing n increases time by a constant

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Match each function to its order of growth

: : : def max _sum(s):
Exponential growth. E.g., recursive fib Return the largest sum of a contiguous
Incrementing n multiplies time by a constant subsequence of s.
>>> max_sum([3, 5, -12, 2, -4, 4, -1, 4, 2, 2])
11
largest = 0
Quadratic growth. for i 1n range(len(s)):
total = 0
Incrementing n increases time by n times a constant for j in range(i, len(s)):

total += s[j]
largest = max(largest, total)
return largest

Linear growth. Mathematical Approach:

Incrementing n increases time by a constant | o | |
Sum of first n positive integers 1s

S n=(n(ntl)) / 2
Logarithmic growth.
Expression for counting number of
operations 1is quadratic with

\

respect to n .

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Visualizing Function Efficiency

(Demo)

More Linked Lists Practice

Recursion and lteration

Many linked list processing functions can be written both iteratively and recursively

Recursive approach: Iterative approach:
e What recursive call do you make? e Describe a process that solves the problem.
e What does this recursive call do/return? e Figure out what additional names you need
e How 1s this result useful 1in solving the to carry out this process.
problem? e Implement the process using those names.

def length(s): def length(s):

"""The number of elements 1in s. """The number of elements 1in s.

>>> length(Link(3, Link(4, Link(5)))) >>> length(Link(3, Link(4, Link(5))))

3 3

if s is Link.empty: k = 0

return 0 while _S 1s not Link.empty .
else: s, k = s.rest, K+ 1

return 1 + length(S-reSt) return k

Constructing a Linked List

Build the rest of the linked list, then combine 1t with the first element. s = Link.empty
s = Link(5, s)
s = Link(4, s)
3 > 4 » 5 / s = Link(3, s)
def range_link(start, end): def range_link(start, end):
""HUReturn a Link containing consecutive ""HUReturn a Link containing consecutive
integers from start up to end. integers from start to end.
>>> range_1link(3, 6) >>> range_link(3, 6)
Link(3, Link(4, Link(5))) Link(3, Link(4, Link(5)))
1f start >= end: s = Link.empty
return Link.empty k = end -1
else: while K >= start,
return Link(start, range_link(start + 1, end)) s = Link(k, s)
k =1

return s

Linked List Mutation

To change the contents of a linked list, assign to first and rest attributes

Example: Append x to the end of non-empty s

>>> t = Link(3, Link(4, Link(5)))
>>> append(t, 6)
>>> 1

Link(3, Link(4, Link(5, Link(6))))

Global Frame

t| - 3 ! »5/ »6/

fl: append p=G

S

b
X1 = S = s.rest

s.rest = Link(x)

Recursion and lteration

Many linked list processing functions can be written both iteratively and recursively

Rec
e W
e W

ursive approach:

nat recursive call do you make?

nat does this recursive call do/return?

e How 1s this result useful 1in solving the

P
def

roblem?

append(s, X):

"""Append x to the end of non-empty s.
>>> append(s, 6) # returns None!

>>> print(s)

<3 4 5 6>

if S.rest 1s not Link.empty

else:

s.rest = Link(x)

Iterative approach:
e Describe a process that solves the problem.

e Figure out what additional names you need
to carry out this process.

e Implement the process using those names.

def append(s, x):
"""Append x to the end of non-empty s.
>>> append(s, 6) # returns None!
>>> print(s)
<3 4 5 6>

while S.rest 1s not Link.empty

S = s.rest

s.rest = Link(x)

Example: Pop

Implement pop, which takes a linked list s and positive integer 1i. It removes and returns
the element at index i of s (assuming s.first has index 0).

def pop(s, 1i):
"""Remove and return element 1 from linked list s for positive 1.
>>> t = Link(3, Link(4, Link(5, Link(6))))
>>> pop(t, 2)

§>> pop(t, 2)
S>> bop(t, 1) Global Frame T,
i>> t tL__ 1 3 > 4 {::*. 5 | 6 ‘////
Link(3)
S | | fl: pop p=G ::::::z////’////'
assert 1 > @ and i < length(s) P
for x in range(_1 — 1). S|~
S = Ss.rest i-ji
result = s.rest.first result | >

s.rest = s.rest.rest

