Linked Lists
Linked List Structure

A linked list is either empty or a first value and the rest of the linked list.

A linked list is a pair. The first (zeroth) element is an attribute value. The rest of the elements are stored in a linked list.

A class attribute represents an empty linked list.

Link(3, Link(4, Link(5, Link.empty)))
Linked List Structure

A linked list is either empty or a first value and the rest of the linked list.

3, 4, 5

```
Link(3, Link(4, Link(5, Link.empty)))
```
Linked List Class

Linked list class: attributes are passed to __init__

```python
class Link:
    empty = ()

    def __init__(self, first, rest=empty):
        assert rest is Link.empty or isinstance(rest, Link)
        self.first = first
        self.rest = rest

Demo
Link(3, Link(4, Link(5  )))
```

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.
Property Methods
Property Methods

In some cases, we want the value of instance attributes to be computed on demand.

For example, if we want to access the second element of a linked list:

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is looked up on an instance.

A @<attribute>.setter decorator on a method designates that it will be called whenever that attribute is assigned. <attribute> must be an existing property method.

(Demo)
Tree Recursion Efficiency
Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

Memoization
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}

def memoized(n):
    if n not in cache:
        cache[n] = f(n)
    return cache[n]

return memoized
```

Keys are arguments that map to return values

Same behavior as f, if f is a pure function

(Demo)
Memoized Tree Recursion

Call to fib
- Found in cache
- Skipped
Tree Class
Tree Abstraction (Review)

Recursive description (wooden trees):
- A tree has a root label and a list of branches.
- Each branch is a tree.
- A tree with zero branches is called a leaf.
- A tree starts at the root.

Relative description (family trees):
- Each location in a tree is called a node.
- Each node has a label that can be any value.
- One node can be the parent/child of another.
- The top node is the root node.

People often refer to labels by their locations: "each parent is the sum of its children"
Tree Class

A Tree has a label and a list of branches; each branch is a Tree

```python
class Tree:
    def __init__(self, label, branches=[]):
        self.label = label
        for branch in branches:
            assert isinstance(branch, Tree)
        self.branches = list(branches)

def fib_tree(n):
    if n == 0 or n == 1:
        return Tree(n)
    else:
        left = fib_tree(n-2)
        right = fib_tree(n-1)
        fib_n = left.label + right.label
        return Tree(fib_n, [left, right])
```

```python
def tree(label, branches=[]):
    for branch in branches:
        assert is_tree(branch)
    return [label] + list(branches)

def label(tree):
    return tree[0]

def branches(tree):
    return tree[1:]

def fib_tree(n):
    if n == 0 or n == 1:
        return tree(n)
    else:
        left = fib_tree(n-2)
        right = fib_tree(n-1)
        fib_n = label(left) + label(right)
        return tree(fib_n, [left, right])
```

(Demo)
Measuring Efficiency
Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

Memoization
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```

Keys are arguments that map to return values

Same behavior as f, if f is a pure function

(Demo)
Memoized Tree Recursion

Call to fib
Found in cache
Skipped

fib(5)
→
fib(3)
→
fib(1)
→
fib(0) fib(1)
→
1 fib(2)
→
fib(0) fib(1)
→
0 1
→
fib(4)
→
fib(2)
→
fib(0) fib(1)
→
0 1
→
fib(3)
→
fib(1)
→
fib(0) fib(1)
→
1 fib(2)
→
fib(0) fib(1)
→
0 1
Exponentiation
Exponentiation

Goal: one more multiplication lets us double the problem size

```python
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)

def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)

def square(x):
    return x * x
```

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases}
\]

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
 (b^{\frac{1}{2}n})^2 & \text{if } n \text{ is even} \\
 b \cdot b^{n-1} & \text{if } n \text{ is odd}
\end{cases}
\]
Exponentiation

Goal: one more multiplication lets us double the problem size

```python
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)

def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
```

Linear time:
- Doubling the input **doubles** the time
- $1024x$ the input takes $1024x$ as much time

Logarithmic time:
- Doubling the input **increases** the time by a constant C
- $1024x$ the input increases the time by only 10 times C
Mutable Linked Lists
Recursive Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

```python
>>> s = Link(1, Link(2, Link(3)))
>>> s.first = 5
>>> t = s.rest
>>> t.rest = s
>>> s.first
5
>>> s.rest.rest.rest.rest.first
2
```

Note: The actual environment diagram is much more complicated.
Linked List Mutation Example
Adding to an Ordered List

```python
def add(s, v):
    """Add v to an ordered list s with no repeats, returning modified s."""
    (Note: If v is already in s, then don't modify s, but still return it.)

    add(s, 0)
```
def add(s, v):
 """Add v to an ordered list s with no repeats, returning modified s."""
 (Note: If v is already in s, then don't modify s, but still return it.)
 add(s, 0) add(s, 3) add(s, 4)
Adding to an Ordered List

```
def add(s, v):
    """Add v to an ordered list s with no repeats..."""

    add(s, 0)    add(s, 3)    add(s, 4)    add(s, 6)
```
Adding to an Ordered List

```python
def add(s, v):
    """Add v to an ordered list s with no repeats..."""
```

```
add(s, 0)  add(s, 3)  add(s, 4)  add(s, 6)
```
Adding to a Set Represented as an Ordered List

```python
def add(s, v):
    """Add v to a set s, returning modified s."""

    >>> s = Link(1, Link(3, Link(5)))
    >>> add(s, 0)
    Link(0, Link(1, Link(3, Link(5)))))
    >>> add(s, 3)
    Link(0, Link(1, Link(3, Link(5)))))
    >>> add(s, 4)
    Link(0, Link(1, Link(3, Link(4, Link(5)))))
    >>> add(s, 6)
    Link(0, Link(1, Link(3, Link(4, Link(5, Link(6))))

    assert s is not Link.empty
    if s.first > v:
        s.first, s.rest = __________________________ , __________________________
    elif s.first < v and empty(s.rest):
        s.rest = __________________________
    elif s.first < v:
        __________________________
    return s
```

![Diagram of Link instances showing the process of adding elements to a set represented as an ordered list.](Image)
Tree Mutation
Example: Pruning Trees

Removing subtrees from a tree is called *pruning*.

Prune branches before recursive processing.

```
def prune(t, n):
    """Prune all sub-trees whose label is n."""
    t.branches = [b for b in t.branches if b.label != n]
    for b in t.branches:
        prune(b, n)
```