Professor Josh Hug

Current Teaching CS61B and CS70

Will teach CS61B in this very place/time 1n the spring

Submit questions: pollev.com/cs61a

Attributes

Announcements

Review: Generating Partitions (from Discussion)

Generating Partitions (from Discussion)

def partition_gen(n, m):
""Yi1eld the partitions of n using parts up to size m.

>>> for partition in sorted(partition_gen(6, 4)):
print(partition)

1+1+1+1+1+1
1 +1+1+1+ 2
1 +1+ 1+ 3
1 +1 +2 + 2
1 +1 + 4
1 + 2 + 3
2 + 2 + 2
2 + 4
3 + 3
- What small initial choice can I make?— 1§US€ mgorgdon’t use m h
- For trees, often: which branch to explore? ﬁ |

» What recursive call for each option?[partition_gen(n-m, m][partition_gen(n, m—1)]

- How can you combine the results of those recursive calls?

Writing Recursive Functions (Review)

Make sure you can answer the following before you start writing code:

PR

--

* How can you combine the results of those recursive calls?

/ﬂw?yleld

- What type of values do they

| yielde
- What do the possible retuwirmm values mean?

yielded

- How can you use those retuirn values to complete your implementation? E.g.,é

- Look to see 1f any option evaluated to true

« Add up the results from each option

1
1 1
1 1
1 1
1 (]
A ’
. 4
A 4
... $.............................----......................................---'

_

Choose an example! partition_gen(6, 4)
Write down the result of each recursive call

J

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression
The <name> is just a name (not a complex expression)

Evaluates to the value of the attribute looked up by <name> in the object
that 1s the value of the <expression>

Attribute Lookup

Looking Up Attributes by Name

Both i1nstances and classes have attributes that can be looked up by dot expressions

<expression> . <name>

To evaluate a dot expression:

1.

Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

<name> 1S matched against the instance attributes of that object; if an
attribute with that name exists, 1ts value 1s returned

IT not, <name> 1s looked up in the class, which yields a class attribute value

That value 1s returned unless 1t 1s a function, 1in which case a bound method 1is
returned instead

Discussion Question: Where's Waldo?

Write an expression with no quotes or + that evaluates to 'Waldo'

class Town:
def init (self, w, aldo): >>> Town(1l, 7).street[2]
1f aldo == 7: 'Waldo'

self.street = {self.f(w): 'Waldo'}

def f(self, x):
return x + 1

Discussion Question: Where's Waldo?

Write an expression with no quotes or + that evaluates to 'Waldo'

class Beach: Reminder: s.pop(k)

def __init__(?elfz: o removes and returns
sand = ['Wal', 'do'l the item at index k >>> Beach().walk(0).wave(0)

self.dig = sand.pop <_ , 'Waldo'

def walk(self, x):
self.wave = lambda y: self.dig(x) + self.dig(y)
return self

Class Attributes

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the i1instance

class Account:
interest = 0.02 # A class attribute

def init (self, account holder):

self.balance = 0
self.holder = account_holder

Additional methods would be defined here

Account('Tom"')
Account('Jim')

>>> Tom_account
>>> j1m_account

>>> tom_account.interest A
0.02 The interest attribute is not part of
>>> jim_account.interest the instance; it's part of the class!
0.02 \ J

(Demo)

Attribute Assignment Statements

p
Account class j> interest: 9%02 0204 0.05

. attributes (withdraw, deposit, __ init_)

4 4
Instance ‘¥>> balance: 0 Instance ‘¥:> balance: 0
attributes of holder: 'Jim’ attributes of holder: '"Tom'
jim_account lnterest: 0.08 tom_account
\§ J \§ J
SSS jim_account — Account('Jim') >>> j%m_aCCOunt.%ntGFESt — 0-@8
>>> tom account = Account('Tom") >>> jlm_account.1nterest
>>> tom_account.interest 0.038
0.02 >>> tom_account.1interest
>>> jim_account.interest 0.04 |
0.02 >>> Account.1lnterest = 0.05
~>> Account.interest = 0.04 >>> tom_account.interest
>>> tom account.interest 0.05
0.04 >>> j1m_account.interest
>>> jim_account.interest 0.08
0.04

Discussion Question: Class Attribute Assignment

Implement the Place class, which takes a name. Its print_history() method prints the name
of the Place and then the names of all the Place instances that were created before 1it.

class Place:

-
last = None

def init_ (self, n):

self.name = n /-

OK to write
self.last or

type(self.last)

~

)

self.then = Place. last

Place. last = gelf
A

[Not ok to write self.last]

def print_history(self):

print(self.name)

if self.then jis not None:
self.then.print_history()

>>> places = [Place(x*2) for x in range(10)]
>>> places[4].print_history()

8

o

4

2

0

>>> places[6].print_history()

12

10

SN B OO

More Tree Practice

Spring 2023 Midterm 2 Question 4(a)

Implement exclude, which takes a tree t and a value x. It returns a tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a
node 1n the result 1s 1ts nearest ancestor node that 1s not excluded.

def exclude(t, x):
"""Return a tree with the non-root nodes of tree t labeled anything but X.

>>> t = tree(l, [tree(2, [tree(2), tree(3), tree(4)]), tree(5, [tree(1)])])
>>> exclude(t, 2)

(1, [31, (41, [5, [11]] (

>>> exclude(t, 1) # The root node cannot be excluded

(1, [2, [2], [3], [4]], I[5]] @& . .
i What will the recursive call
filtered_branches = map(lambda y: _EXclu on each branch return?

bs = []

for b in filtered_branches: 37% of stu{ What should we do with those
. == — t thi return values?
30% got |if label(b) : | go is r

it right; — : |
1 oé]4 ::::ﬁ§f’extend (branches(b)<§{ 24% got Branch has label x? | 5
options |else: it right Take 1ts branches

‘ ’ bs.append(b) ‘ ’ 2

>
return tree(label(t), bs) Otherwise we’re cool [][

with the branch as-1is
\

o

