
Professor Josh Hug

Current Teaching CS61B and CS70

Will teach CS61B in this very place/time in the spring

Submit questions: pollev.com/cs61a

Attributes

Announcements

Review: Generating Partitions (from Discussion)

Generating Partitions (from Discussion)

5

def partition_gen(n, m):
 """Yield the partitions of n using parts up to size m.

 >>> for partition in sorted(partition_gen(6, 4)):
 ... print(partition)
 1 + 1 + 1 + 1 + 1 + 1
 1 + 1 + 1 + 1 + 2
 1 + 1 + 1 + 3
 1 + 1 + 2 + 2
 1 + 1 + 4
 1 + 2 + 3
 2 + 2 + 2
 2 + 4
 3 + 3
 """
• What small initial choice can I make?

• For trees, often: which branch to explore?

• What recursive call for each option?

• How can you combine the results of those recursive calls?

Use m or don’t use m

partition_gen(n, m-1) partition_gen(n-m, m

Writing Recursive Functions (Review)

Make sure you can answer the following before you start writing code:

• What small initial choice can I make?
• For trees, often: which branch to explore?

• What recursive call for each option?

• How can you combine the results of those recursive calls?
• What type of values do they return?
• What do the possible return values mean?
• How can you use those return values to complete your implementation? E.g.,

• Look to see if any option evaluated to true
• Add up the results from each option

6

Choose an example! partition_gen(6, 4)
Write down the result of each recursive call

yield

yielded

yielded

Use m or don’t use m

partition_gen(n, m-1) partition_gen(n-m, m

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression

The <name> is just a name (not a complex expression)

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

Dot expression
Call expression

8

(Demo)

Attribute Lookup

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

10

Both instances and classes have attributes that can be looked up by dot expressions

Discussion Question: Where's Waldo?

Write an expression with no quotes or + that evaluates to 'Waldo'

11

class Town:
 def __init__(self, w, aldo):
 if aldo == 7:
 self.street = {self.f(w): 'Waldo'}

 def f(self, x):
 return x + 1

>>> Town(1, 7).street[2]
'Waldo'

Discussion Question: Where's Waldo?

12

class Beach:
 def __init__(self):
 sand = ['Wal', 'do']
 self.dig = sand.pop

 def walk(self, x):
 self.wave = lambda y: self.dig(x) + self.dig(y)
 return self

>>> Beach().walk(0).wave(0)
'Waldo'

Reminder: s.pop(k)
removes and returns
the item at index k

Write an expression with no quotes or + that evaluates to 'Waldo'

Class Attributes

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

14

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

(Demo)

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

15

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Discussion Question: Class Attribute Assignment

class Place:

 last = None

 def __init__(self, n):

 self.name = n

 self.then = ___________

 ___________ = self

 def print_history(self):

 print(self.name)

 if __________ is not None:

16

>>> places = [Place(x*2) for x in range(10)]
>>> places[4].print_history()
8
6
4
2
0
>>> places[6].print_history()
12
10
8
6
4
2
0

Implement the Place class, which takes a name. Its print_history() method prints the name
of the Place and then the names of all the Place instances that were created before it.

Place.last

OK to write
self.last or

type(self.last)

Not ok to write self.last

Place.last

self.then.print_history()
self.then

More Tree Practice

Spring 2023 Midterm 2 Question 4(a)
Implement exclude, which takes a tree t and a value x. It returns a tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a
node in the result is its nearest ancestor node that is not excluded.

18

def exclude(t, x):
 """Return a tree with the non-root nodes of tree t labeled anything but x.

 >>> t = tree(1, [tree(2, [tree(2), tree(3), tree(4)]), tree(5, [tree(1)])])
 >>> exclude(t, 2)
 [1, [3], [4], [5, [1]]]
 >>> exclude(t, 1) # The root node cannot be excluded
 [1, [2, [2], [3], [4]], [5]]
 """
 exclude(y, x)

label(b) == x

extend

1

2 5

12 43

In Spring 2023,
20% of students
got this right

37% of students
got this right

30% got
it right;
1 of 4
options

branches(b) 24% got
it right

2 5

12 43

2 5

12 3

1

4

 filtered_branches = map(lambda y: _______________, branches(t))
 bs = []
 for b in filtered_branches:

 if ________________:

 bs.________(______________)
 else:
 bs.append(b)
 return tree(label(t), bs)

What will the recursive call
on each branch return?

What should we do with those
return values?

Branch has label x?
Take its branches

Otherwise we’re cool
with the branch as-is

