
Scheme Lists

Announcements & Downloading the Scheme Interpreter

More Special Forms

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

4

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

(print

)

The begin special form combines multiple expressions into one expression

if x > 10:
 print('big')
 print('guy')
else:
 print('small')
 print('fry')

(cond ((> x 10) (begin (print 'big) (print 'guy)))
 (else (begin (print 'small) (print 'fry))))

(if (> x 10) (begin
 (print 'big)
 (print 'guy))
 (begin
 (print 'small)
 (print 'fry)))

(Demo)

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

5

a = 3
b = 2 + 2
c = math.sqrt(a * a + b * b)

(define c (let ((a 3)
 (b (+ 2 2)))
 (sqrt (+ (* a a) (* b b)))))

a and b are still bound down here a and b are not bound down here

(Demo)

Lists

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2 3 4

2

(Demo)

Break: 5 minutes

List Construction

cons is always called on two arguments: a first value and the rest of the list.

list is called on any number of arguments that all become values in a list.

append is called on any number of list arguments that all become concatenated in a list.

9(Demo)

List Construction

cons is always called on two arguments: a first value and the rest of the list.

list is called on any number of arguments that all become values in a list.

append is called on any number of list arguments that all become concatenated in a list.

10

scm> (define s (cons 1 (cons 2 nil)))

scm> (list 3 s)

scm> (cons 3 s)

scm> (append 3 s)

scm> (list s s)

scm> (cons s s)

scm> (append s s)

(3 1 2)
((3) 1 2)
(3 (1 2))
((3) (1 2))
(3 1 (2))
((3) 1 (2))
(3 (1 (2)))
((3) (1 (2)))

((1 2) (1 2))
((1 2) 1 2)
(1 2 1 2)

Error

(Demo)

Other Built-in List Procedures

(Demo)

Recursive Construction

To build a list one element at a time, use cons
To build a list with a fixed length, use list

12

;;; Return a list of two lists; the first n elements of s and the rest

;;; scm> (split (list 3 4 5 6 7 8) 3)

;;; ((3 4 5) (6 7 8))

(define (split s n)

 ; The first n elements of s

 (define (prefix s n)

 (if (zero? n) ___ (_____ ________ (prefix _______ (- n 1)))))

 ; The elements after the first n

 (define (suffix s n)

 (if (zero? n) ___ ________________________))

 (_____ (prefix s n) (suffix s n)))

cons (car s) (cdr s)

s

nil

(suffix (cdr s) (- n 1))

list

5 6 7 83 4

3 4 5

Recursive Construction Version 2

To build a list one element at a time, use cons
To build a list with a fixed length, use list

13

;;; Return a list of two lists; the first n elements of s and the rest

;;; scm> (split (list 3 4 5 6 7 8) 3)

;;; ((3 4 5) (6 7 8))

(define (split s n)

 (if (= n 0)

 (let ((split-rest (split (cdr s) (- n 1))))

 (_____ _______________________________

 (cdr split-rest)))))

(list nil s)

(cons (car s) (car split-rest))cons

5 6 7 83 4

nil543

Symbolic Programming: Quotation

(Demo)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

15

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists

(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for
which a true value is the result

(apply f s): call a procedure f with the elements of a list s as its arguments

17

(define count (list 1 2 3 4))

(define beats (map ______________________________ count))

(define rhythm (______ _______ beats))

(1 2 3 4) ; count
((and a 1) (and a 2) (and a 3) (and a 4)) ; beats
(and a 1 and a 2 and a 3 and a 4) ; rhythm

(lambda (x) (list 'and 'a x))

apply append

