Scheme Lists

Announcements & Downloading the Scheme Interpreter

More Special Forms

Cond & Begin

The cond special form that behaves like if-elif-else statements 1in Python

if x > 10: .
print('big") | | (print |
elif x > 5: (cond ((> x 10) (print 'big)) (cond ((> x 10) 'big)
orint('medium"') ((> x 5) (print 'medium)) ((> x 5) ‘'medium)
else: (else (print 'small))) (else 'small)))

print('small')

The begin special form combines multiple expressions 1into one expression

if x > 10: (cond ((> x 10) (begin (print 'big) (print 'quy)))
print('big") (else (begin (print 'small) (print 'fry))))
print('quy"')
else: (if (> x 10) (begin
print('small') (print 'big)
print(‘'fry") (print 'quy))
(begin

(print 'small)
(print 'fry)))

(Demo)

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

a =3 (define c (let ((a 3)

b =2+ 2 (b (+ 2 2)))

c = math.sqrt(a x a + b *x b) (sqrt (+ (x a a) (x b b)))))
a and b are still bound down here a and b are not bound down here

(Demo)

Lists

Scheme Lists

In the late 1950s, computer scientists used confusing names

e cons: Two—argument procedure t

¢ Car.

o cdr:

Procedure t
Procedure t

nat returns t

nat returns t

e nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil))
1 2)

ons 1 (cons 2 (cons 3 (cons 4 nil)))) 1| ——

nat creates a linked Llist
ne first element of a list

ne rest of a list

define x (cons 1 (cons 2 nil))

(Demo)

1| e—4—

2

(cons 2 nil)

nil

Break: 5 minutes

List Construction

cons 1s always called on two arguments: a first value and the rest of the Llist.
list is called on any number of arguments that all become values in a list.

append 1s called on any number of list arguments that all become concatenated in a Llist.

(Demo)

List Construction

cons 1s always called on two arguments: a first value and the rest of the Llist.
list is called on any number of arguments that all become values in a list.

append 1s called on any number of list arguments that all become concatenated in a Llist.
(31 2)

((3) 1 2)

(3 (1 2))

((3) (1 2))

scm> (define s (cons 1 (cons 2 nil)))

scm> (list 3 s)

scm> (cons 3 s)

(31 (2))
scm> (append 3 s) — Error ((3) 1 (2))
scm> (list s s) (3 (1 (2)))

((3) (1 (2)))

scm> (cons s s)

scm> (append s s) ((12) (1 2))
\((1 2) 1 2)
(121 2)

(Demo)

Other Built-in List Procedures

(Demo)

Recursive Construction

To build a list one element at a time, use cons
To build a list with a fixed length, use list

+»+ Return a list of two lists; the first n elements of s and the rest

33 scm> (split (list 3456 7 8) 3)

2 ((345) (67 8))

(define (split s n) [;I:H——»

* The first n elements of s

(define (prefix s n)
(if (zero? n) Nil (cons (car s) (prefix (cdr s) (- n 1)))))

* The elements after the first n

(define (suffix s n)
(if (zero? n) S (suffix (cdr s) (= n 1))y)

(List (prefix s n) (suffix s n)))

—

Recursive Construction Version 2

To build a list one element at a time, use cons
To build a list with a fixed length, use list

»»+ Return a list of two lists; the first n elements of s and the rest

:33 scm> (split (list 3456 7 8) 3)
s+ ((345) (67 8))
(define (split s n)

(if (= n 0)
(list nil s)

3| —1—> | 4| o > | 5

(let ((split-rest (split (cdr s) (= n 1))))
(cons (cons (car s) (car split-rest))

(cdr split-rest)))))

Symbolic Programming: Quotation

(Demo)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)

> (define b 2) g | | A
> (list a b) No sign of “a” and “b"” 1in the
(1 2) — resulting value

N Y

Quotation 1s used to refer to symbols directly 1in Lisp.

> (list 'a 'b) — " Short for (quote a), (quote b): :
(a b) Special form to i1ndicate that the
> (list 'a b) expression 1itself 1s the value.

(a 2)

Quotation can also be applied to combinations to form lists.

> '(a b c)

(a b c)

> (car '(a b c))
a

> (cdr '(a b c))
(b c)

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists
(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for
which a true value 1s the result

(apply f s): call a procedure f with the elements of a list s as its arguments

(1 2 3 4) ; count
((and a 1) (and a 2) (and a 3) (and a 4)) ; beats
(and a 1 and a 2 and a 3 and a 4) : rhythm

(define count (list 1 2 3 4))

(define rhythm (@PPLly append pegts))

