How Fast Is This (I)?

- For this program (L is a list and N <= len(L)):

  ```python
  for x in range(N):
      if L[x] < 0:
          c += 1  
  ```

- What is the worst-case time, measured in number of comparisons?

- What is the worst-case time, measured in number of additions (+=)?

- How about here?

  ```python
  for x in range(N):
      if L[x] < 0:
          c += 1
          break
  ```

Answer:

\[\Theta(N) \] comparisons

Answer:

\[\Theta(N) \] additions
How Fast Is This (I)?

- For this program (L is a list and N <= len(L)):
  ```python
  for x in range(N):    # Answer: Θ(N) comparisons
    if L[x] < 0:        # Answer: Θ(N) additions
      c += 1
  ```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?
  ```python
  for x in range(N):    # Answer: Θ(N) comparisons
    if L[x] < 0:        # Answer: Θ(1) additions
      c += 1
      break
  ```

How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f? (Simplest answer)
  ```python
  for x in range(2*N):
    f(x, x, x)
  for y in range(3*N):
    f(x, y, y)
  for z in range(4*N):
    f(x, y, z)
  ```

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f? (Simplest answer)
  ```python
  for x in range(2*N):    # Answer: Θ(N³)
    f(x, x, x)
  for y in range(3*N):
    f(x, y, y)
  for z in range(4*N):
    f(x, y, z)
  ```
How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f? (Simplest answer)

```python
for x in range(2*N):
    f(x, x, x)
for y in range(3*N):
    f(x, y, y)
for z in range(4*N):
    f(x, y, z)
```

Answer: $\Theta(N^3)$

- Why not $\Theta(24N^3 + 6N^2 + 2N)$?

That's correct, but equivalent to the simpler answer of $\Theta(N^3)$.

How Fast Is This (III)?

- What is the complexity of this program, measured by number of calls to f?

```python
for x in range(N):
    for y in range(x):
        f(x, y)
```

Answer: $\Theta(N^2)$

- The complexity is given by an arithmetic series:

$$0 + 1 + 2 + \ldots + N - 1 = N(N - 1)/2 \in \Theta(N^2).$$

- Again, constant factors ($1/2$) and linear terms ($N/2$) are ignorable.
How Fast Is This (IV)?

- What about this one, measured by number of calls to \(f \)? (Careful! This is tricky.)

- How about measured by number of comparisons (\(<\))?

\[
z = 0 \\
\text{for } x \text{ in range}(N): \\
\quad \text{for } y \text{ in range}(N): \\
\quad \quad \text{while } z < N: \\
\quad \quad \quad f(x, y, z) \\
\quad \quad z += 1
\]

In practice, which measure (calls to \(f \) or comparisons) would matter?

- Depends on size of \(N \), actual cost of \(f \). For large enough \(N \), comparisons will matter more.
New Subject: Avoiding Redundant Computation

- Consider again the classic Fibonacci recursion:
  ```python
def fib(n):
    if n <= 1:
        return n
    else:
        return fib(n-1) + fib(n-2)
```
- This is a tree recursion with a serious speed problem.

- Redundant computations and therefore computing time grow exponentially.

Avoiding Redundant Computation (II)

- The usual iterative version of `fib` does not have this problem because it saves the results of the recursive calls (in effect) and reuses them.
- Each computation of a number in the sequence happens exactly once, so the computation is linear in `n` (if we count additions as constant-time operations).
  ```python
def fib(n):
    if n <= 1:
        return n
    a = 0
    b = 1
    for k in range(2, n+1):
        a, b = b, a+b
    return b
```

Change Counting

- Consider the problem of determining the number of ways to give change for some amount of money:
  ```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    """Return the number of ways to make change for AMOUNT, where
    the coin denominations are given by COINS."
    if amount == 0:
        return 1
    elif len(coins) == 0 or amount < 0:
        return 0
    else:
        return count_change(amount-coins[0], coins) + 
        count_change(amount, coins[1:])
```
- Here, we often revisit the same subproblem:
 - E.g., Consider making change for 87 cents.

Memoizing

- Extending the iterative Fibonacci idea, let's keep around a table ("memo table") of previously computed values.
- Consult the table before using the full computation.
  ```python
def count_change(amount, coins):
    memo_table = {}
    def count_change(amount, coins):
        key = (amount, coins)
        if key not in memo_table:
            memo_table[key] = full_count_change(amount, coins)
        return memo_table[key]
    # original recursive solution goes here verbatim
    return count_change(amount, coins)
```
- Question: how could we test for infinite recursion?
Optimizing Memoization

- Used a dictionary to memoize `count_change`, which is highly general, but can be relatively slow.
- More often, we use arrays indexed by integers (lists in Python), but the idea is the same.
- For example, in the `count_change` program, we can index by amount and by the number of coins remaining in coins.

```python
def count_change(amount, coins):
    # memo_table[amt][k] contains the value computed for
    # count_change(amt, coins[k])
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    memo_table[0] = [0] * (len(coins)+1)
    def count_change(amount, coins):
        if amount < 0: return 0
        elif memo_table[amount][len(coins)] == -1:
            memo_table[amount][len(coins)] = count_change(amount, coins)
            return memo_table[amount][len(coins)]
        else:
            return memo_table[amount][len(coins)]
    def full_count_change(amount, coins):
        memo_table = {}  
        def count_change(amount, coins):
            # Full recursive version.
            return count_change(amount, coins)
        def full_count_change(amount, coins):
            return count_change(amount, coins)
    return full_count_change(amount, coins)
```

Result of Tracing

- Consider `count_change(57)` (-> N means “returns N”):

```python
full_count_change(57, (1)) -> 0  # Need shorter 'coins' arguments
full_count_change(56, (1)) -> 0  # first.
... full_count_change(1, (1)) -> 0
full_count_change(0, (1)) -> 1  # For same coins, need smaller
full_count_change(1, (1)) -> 1  # amounts first.
... full_count_change(57, (1,)) -> 1
full_count_change(2, (5, 1)) -> 1
full_count_change(7, (5, 1)) -> 2
... full_count_change(57, (5, 1)) -> 12
full_count_change(7, (10, 5, 1)) -> 2
full_count_change(17, (10, 5, 1)) -> 6
... full_count_change(32, (10, 5, 1)) -> 16
full_count_change(7, (25, 10, 5, 1)) -> 2
full_count_change(32, (25, 10, 5, 1)) -> 18
full_count_change(57, (25, 10, 5, 1)) -> 60
full_count_change(57, (50, 25, 10, 5, 1)) -> 2
full_count_change(57, (50, 25, 10, 5, 1)) -> 62
```

Order of Calls

- Going one step further, we can analyze the order in which our program ends up filling in the table.
- So consider adding some tracing to our memoized `count_change` program (using an extension of the `@trace` decorator from Lecture #9).

```python
memo_table = {}  
def count_change(amount, coins):
    ... full_count_change(amount, coins) ...
    return memo_table(amount, coins)
@trace
def full_count_change(amount, coins):
    if amount == 0: return 1
    elif len(coins) == 0 or amount < 0: return 0
    else:
        return count_change(amount, coins[1:]) \ 
        + count_change(amount-coins[0], coins)
    return count_change(amount, coins)
```

Order of Calls (II)

- (New slide; not in lecture)
- We can see from the code that to compute the value of `full_count_change(N, C)`, it is sufficient to have
 - The values of `full_count_change(N, C[k])` for `1 ≤ k ≤ len(C)`, and
 - The values of `full_count_change(k, C)` for `k < N`,
- And that tells us that, for example, we can compute all the values for `full_count_change(k, C)` for `C == ()`, then `C == (1,)`, then `C == (5,)`, and
- And for each of these values of `C`, we can compute `full_count_change(k, C)` for all values of `k` in order,
- ... and at each point, we will already have computed all the recursive call values we need.
Filling in the Memo Table

<table>
<thead>
<tr>
<th>Amount</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Arrows show order of filling

23 0 1 5 9 9 9
24 0 1 5 9 9 9
25 0 1 6 12 13 13
26 0 1 6 12 13 13

54 0 1 11 36 49 50
55 0 1 12 42 60 62
56 0 1 12 42 60 62
57 0 1 12 42 60 62

Dynamic Programming

- Now rewrite `count_change` to make the order of calls explicit, so that we needn’t check to see if a value is memoized.
- Technique is called dynamic programming (for some reason).
- We start with the base cases (0 coins) and work backwards.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
def count_change(amount, coins):
    if amount < 0: return 0
    else: return memo_table[amount][len(coins)]
def full_count_change(amount, coins): # How often called?
    # (calls count_change for recursive results)
    for a in range(0, amount+1):
        memo_table[a][0] = full_count_change(a, ())
    for k in range(1, len(coins) + 1):
        for a in range(1, amount+1):
            memo_table[a][k] = full_count_change(a, coins[-k:])
    return count_change(amount, coins)
```