Lecture #21: Complexity, Memoization

How Fast Is This (I)?

- For this program (L is a list and N <= len(L)):
  ```python
  for x in range(N):
      if L[x] < 0:
          c += 1
  ```
 - What is the worst-case time, measured in number of comparisons?
 - What is the worst-case time, measured in number of additions (+=)?
 - How about here?
    ```python
    for x in range(N):
        if L[x] < 0:
            c += 1
            break
    ```

- Answer:
  ```python
  for x in range(N):
      # Answer: \( \Theta(N) \) comparisons
      if L[x] < 0:
          c += 1
  ```
  ```python
  # Answer: \( \Theta(N) \) additions
  ```

 - What is the worst-case time, measured in number of comparisons?
 - What is the worst-case time, measured in number of additions (+=)?
 - How about here?
    ```python
    for x in range(N):
        if L[x] < 0:
            c += 1
            break
    ```
How Fast Is This (I)?

- For this program (L is a list and N <= len(L)):
  ```python
  for x in range(N):
      if L[x] < 0:
          c += 1
      # Answer: \( \Theta(N) \) additions
  
  • What is the worst-case time, measured in number of comparisons?
  • What is the worst-case time, measured in number of additions (+=)?
  • How about here?
  ```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

How Fast Is This (II)?

- Assume that execution of \(f \) takes constant time.
- What is the complexity of this program, measured by number of calls to \(f \)? (Simplest answer)

```python
for x in range(2*N):
    f(x, x, x)
for y in range(3*N):
    f(x, y, y)
for z in range(4*N):
    f(x, y, z)
```

- Assume that execution of \(f \) takes constant time.
- What is the complexity of this program, measured by number of calls to \(f \)? (Simplest answer)

```python
for x in range(2*N):
    f(x, x, x)
for y in range(3*N):
    f(x, y, y)
for z in range(4*N):
    f(x, y, z)
```
How Fast Is This (II)?

- Assume that execution of \(f \) takes constant time.
- What is the complexity of this program, measured by number of calls to \(f \)? (Simplest answer)

\[
\begin{align*}
\text{for } x \text{ in range}(2\cdot N): & \quad \text{# Answer: } \Theta(N^3) \\
& f(x, x, x) \\
& \text{for } y \text{ in range}(3\cdot N): \\
& \quad f(x, y, y) \\
& \text{for } z \text{ in range}(4\cdot N): \\
& \quad f(x, y, z)
\end{align*}
\]

- Why not \(\Theta(24N^3 + 6N^2 + 2N) \)?

That's correct, but equivalent to the simpler answer of \(\Theta(N^3) \).

How Fast Is This (III)?

- What is the complexity of this program, measured by number of calls to \(f \)?

\[
\begin{align*}
\text{for } x \text{ in range}(N): & \quad \text{# Answer } \Theta(N^2) \\
& \text{for } y \text{ in range}(x): \\
& \quad f(x, y)
\end{align*}
\]

- The complexity is given by an arithmetic series:
 \[0 + 1 + 2 + \cdots + N - 1 = N(N - 1)/2 \in \Theta(N^2)\).
- Again, constant factors \((1/2)\) and linear terms \((N/2)\) are ignorable.
How Fast Is This (IV)?

- What about this one, measured by number of calls to \(f \)? (Careful! This is tricky.)
- How about measured by number of comparisons (<)?

\[
z = 0 \\
\text{for } x \text{ in range}(N): \\
\quad \text{for } y \text{ in range}(N): \\
\quad \quad \text{while } z < N: \\
\quad \quad \quad f(x, y, z) \\
\quad \quad \quad z += 1
\]

- In practice, which measure (calls to \(f \) or comparisons) would matter?

- In practice, which measure (calls to \(f \) or comparisons) would matter?
- Depends on size of \(N \), actual cost of \(f \). For large enough \(N \), comparisons will matter more.
Avoiding Redundant Computation

• Consider again the classic Fibonacci recursion:
  ```python
def fib(n):
    if n <= 1:
      return n
    else:
      return fib(n-1) + fib(n-2)
  ```

• This is a tree recursion with a serious speed problem.

• Redundant computations and therefore computing time grow exponentially.

Avoiding Redundant Computation (II)

• The usual iterative version of `fib` does not have this problem because it saves the results of the recursive calls (in effect) and reuses them.

• Each computation of a number in the sequence happens exactly once, so the computation is linear in \(n \) (if we count additions as constant-time operations).

```python
def fib(n):
    if n <= 1:
      return n
    a = 0
    b = 1
    for k in range(2,n+1):
      a, b = b, a+b
    return b
```

Change Counting

• Consider the problem of determining the number of ways to give change for some amount of money:

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    return count_change(amount, coins) + \
    count_change(amount-coins[0], coins) + \ 
    count_change(amount, coins[1:])
```

• Here, we often revisit the same subproblem:
 - E.g., Consider making change for 87 cents.
 - When we choose to use one half-dollar piece, we have the same subproblem (change for 37 cents) as when we choose to use no half-dollars and two quarters.

Memoizing

• Extending the iterative Fibonacci idea, let’s keep around a table (“memo table”) of previously computed values.

• Consult the table before using the full computation.

• Example: `count_change`:

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = {}
    def count_change(amount, coins):
        key = (amount, coins)
        if key not in memo_table:
            memo_table[key] = full_count_change(amount, coins)
        return memo_table[key]
    def full_count_change(amount, coins):
        # original recursive solution goes here verbatim
        # when it calls `count_change`, calls memoized version.
        return count_change(amount,coins)
```

• Question: how could we test for infinite recursion?
Optimizing Memoization

- Used a dictionary to memoize `count_change`, which is highly general, but can be relatively slow.
- More often, we use arrays indexed by integers (lists in Python), but the idea is the same.
- For example, in the `count_change` program, we can index by amount and by the number of coins remaining in coins.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    # memo_table[amt][k] contains the value computed for
    # count_change(amt, coins[k])
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    def count_change(amount, coins):
        if amount < 0: return 0
        elif memo_table[amount][len(coins)] == -1:
            memo_table[amount][len(coins)] = count_change(amount, coins)
        return memo_table[amount][len(coins)]
    def full_count_change(amount, coins):
        # Full recursive version.
        return count_change(amount, coins)
```

Result of Tracing

- Consider `count_change(57)` ($\rightarrow N$ means "returns $N"$

```python
full_count_change(57, (1)) -> 0  # Need shorter 'coins' arguments
full_count_change(56, (1)) -> 0  # first.
...
full_count_change(1, (1)) -> 0
full_count_change(0, (1,)) -> 1  # For same coins, need smaller first.
full_count_change(1, (1,)) -> 1  # Amounts first.
...
full_count_change(57, (1,)) -> 1
full_count_change(2, (5, 1)) -> 1
full_count_change(7, (5, 1)) -> 2
    ...
full_count_change(57, (5, 1)) -> 12
full_count_change(7, (10, 5, 1)) -> 2
full_count_change(17, (10, 5, 1)) -> 6
...
full_count_change(32, (10, 5, 1)) -> 16
full_count_change(7, (25, 10, 5, 1)) -> 2
full_count_change(32, (25, 10, 5, 1)) -> 18
full_count_change(57, (25, 10, 5, 1)) -> 60
full_count_change(7, (50, 25, 10, 5, 1)) -> 2
full_count_change(57, (50, 25, 10, 5, 1)) -> 62
```

Order of Calls

- Going one step further, we can analyze the order in which our program ends up filling in the table.
- So consider adding some tracing to our memoized `count_change` program (using an extension of the `@trace1` decorator from Lecture #9).

```python
memo_table = {}
def count_change(amount, coins):
    ... full_count_change(amount, coins) ...
    return memo_table[amount,coins]
@trace
def full_count_change(amount, coins):
    if amount == 0: return 1
    elif len(coins) == 0 or amount < 0: return 0
    else:
        return count_change(amount, coins[1:]) \
        + count_change(amount-coins[0], coins)
return count_change(amount,coins)
```

Order of Calls (II)

- (New slide: not in lecture)
- We can see from the code that to compute the value of `full_count_change(N, C)`, it is sufficient to have
 - The values of `full_count_change(N, C[k])` for $1 \leq k \leq \text{len}(C)$, and
 - The values of `full_count_change(k, C)` for $k < N$.
- And that tells us that, for example, we can compute all the values for `full_count_change(k, C)` for $C == ()$, then $C == (1,)$, then $C == (5, 1)$,
- And for each of these values of C, we can compute `full_count_change(k, C)` for all values of k in order,
- ... and at each point, we will already have computed all the recursive call values we need.
Dynamic Programming

- Now rewrite `count_change` to make the order of calls explicit, so that we needn’t check to see if a value is memoized.
- Technique is called *dynamic programming* (for some reason).
- We start with the base cases (0 coins) and work backwards.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    def count_change(amount, coins):
        if amount < 0: return 0
        else: return memo_table[amount][len(coins)]
    def full_count_change(amount, coins): # How often called?
        ... # (calls count_change for recursive results)
        for a in range(0, amount+1):
            memo_table[a][0] = full_count_change(a, ())
        for k in range(1, len(coins) + 1):
            for a in range(1, amount+1):
                memo_table[a][k] = full_count_change(a, coins[-k:])
            return count_change(amount, coins)
```

Filling in the Memo Table

<table>
<thead>
<tr>
<th>Amount</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>36</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>55</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>42</td>
<td>60</td>
<td>62</td>
</tr>
<tr>
<td>56</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>42</td>
<td>60</td>
<td>62</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>42</td>
<td>60</td>
<td>62</td>
</tr>
</tbody>
</table>