Representation

Announcements

String Representations

String Representations

In Python, all objects produce two string representations:
The str is (often) legible to humans & shows up when you print

The repr is (often) legible to Python & shows up when you evaluate interactively

The str and repr strings are often the same, but not always

>>> from fractions import Fraction
>>> half = Fraction(1l, 2)

>>> str(half)

|1/2|

>>> repr(half)

'Fraction(1, 2)'

>>> print(half)

1/2

>>> half

Fraction(1l, 2)

IT a type only defines a repr string, then the repr string is also the str string.

(Demo)

Special Method Names in Python

Certain names are special because they have built-in behavior

These names always start and end with two underscores

_init Method invoked automatically when an object is constructed
~ str_ Method invoked by str() and print()
__repr__ Method invoked to display an object as a Python expression
_eq Method invoked by ==, to compare two objects
__bool Method invoked to convert an object to True or False

>>> t@ = Transaction(@, 20, 5)

>>> t1 = Transaction(l, 5, 5)

>>> str(tl) Same >>> tl.__str__()

'1: no change' behayior '1l: no change'

>>> tQ == t1 using >>> t0. eq_ (t1)

False methods False

>>> bhool(t0) >>> t0. bool ()

True True

Class Practice

(Modified) Spring 2023 Midterm 2 Question 2(a)

class Letter:
def init (self, contents: str):

self.contents

contents

False

self.sent

def send(self):
1f self.sent:

print(self, 'was already sent.')

else:

print(self, 'has been sent.’)

self.sent = True

return

Letter(self.contents.upper())

Implement the Letter class. A Letter has two
instance attributes: contents (a str) and sent
(a bool). Each Letter can only be sent once.
The send method prints whether the letter was
sent, and 1if i1t was, returns the reply, which
1s a new Letter instance with the same
contents, but in all caps.

Hint: 'hi'.upper() evaluates to 'HI'.

"n"MA letter receives an all-caps reply.

>>> hi = Letter('Hello, World!")

>>> hi.send()

Letter('Hello, World!') has been sent.
Letter('HELLO, WORLD!")

>>> hi.send()

Letter('Hello, World!') was already sent.
>>> Letter('Hey').send().send()

def repr_ (self):

return f'Letter({repr(self.contents)})’

Letter('Hey') has been sent.
Letter('HEY') has been sent.
Letter('HEY")

(Modified) Spring 2023 Midterm 2 Question 2(b)

Implement the Numbered class. A Numbered letter
has a number attribute equal to how many
numbered letters have previously been
constructed. This number appears 1in 1ts repr
string. Assume Letter 1s implemented correctly.

class Numbered(Letter):

number = 0

def init (self, contents):

super(). init (contents) ""UA numbered letter has a different
repr method that shows its number.
self.number = Numbered.number

>>> hey = Numbered('Hello, World!")

Numbered.number += 1 >>> hey.send()
#0: Letter('Hello, World!') has been sent.
def _ _repr__(self): Letter('HELLO, WORLD!")

Lf X () () >>> Numbered('Hi!'"').send()
return f’#{Se - um er}: { SUperty.__Trepr__ L' #1: Letter('Hi!') has been sent.

Letter('HI!")

>>> hey
#0: Letter('Hello, World!'")

Dictionary/Recursion Practice

Make Change

coins is a dictionary from denominations to counts. Two nickels and a quarter is +15: 2, 25: 1}

remove_one(coins, amount) returns a dictionary with one fewer count:
remove one({5: 2, 25: 1}, 5) — {5: 1, 25: 1} remove_one({5: 2, 25: 1}, 25) —> {5: 2}

def make_ change(amount, coins):
"HHReturn a list of coins that sum to amount, preferring the smallest coins

available and placing the smallest coins first in the returned list.""™"

>>> make_change(8, coins)

- What small initial choice can I make? ‘Use a 2 or don't
Use a 2 3,12, 4]

- What recursive call for each option? \ >33 make_change(25, coins)
make_change(25, {2: 2, 3: 2, 4: 3, 5: 1}) (2, 3, 3, 4, 4, 4, 5]

L>f>> coins = {2: 2, 3: 2, 4: 3, 5: 1}

Returns [2, 3, 3, 4, 4, 4, 5]

use a 2

make_change (23 ’{2: 1, 3: 2, 4: 3, 5: 1h

Returns 13, 3, 4, 4, 4, 5]

Make Change

coins is a dictionary from denominations to counts. Two nickels and a quarter is +15: 2, 25: 1}

remove_one(coins, amount) returns a dictionary with one fewer count:
remove one({5: 2, 25: 1}, 5) — {5: 1, 25: 1} remove_one({5: 2, 25: 1}, 25) —> {5: 2}

25 {2: 2, 3: 2, 4: 3, 5: 1}
def make_ change(amount, coins):
"HHReturn a list of coins that sum to amount, preferring the smallest coins

available and placing the smallest coins first in the returned list.""™"
1T not coilns:

return None >>> CO01lNhS = {2: 2, 3: 2, 4: 3, 5: 1}
smallest = min(coins) smallest is 2 >>> make_change(8, coins)
rest = remove one(coins, smallest) [2, 2, 4]
if amount < smallest: rest is {2: 1, 3: 2, 4: 3, 5: 1} >>> make_change(25, coins)
return None [21 31 31 41 4r 4; 5]
elif amount == smallest: esrmrennnnn e .
. make_change(23, {2: 1, 3: 2, 4: 3, 5: 1}) :
return [smallest] i Returns [3, 3, 4, 4, 4, 5] j
else: 23 et e e e e e ee o eeeoeeeeooaeeeoeeeeeoeeeeeoeeeeooeseeeoeeeeeoeseeeooseeeooeeeeeonns .
result = make_change(_amount-smallest, rest) result is [3, 3, 4, 4, 4, 5]
1T result:
return [smallest] + result [2] + [3, 3, 4, 4, 4, 5] -> [2, 3, 3, 4, 4, 4, 5]
else:

return make_change(amount, rest)

