
Representation

Announcements

String Representations

String Representations

In Python, all objects produce two string representations:

• The str is (often) legible to humans & shows up when you print

• The repr is (often) legible to Python & shows up when you evaluate interactively

The str and repr strings are often the same, but not always

4

(Demo)

If a type only defines a repr string, then the repr string is also the str string.

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> str(half)
'1/2'
>>> repr(half)
'Fraction(1, 2)'
>>> print(half)
1/2
>>> half
Fraction(1, 2)

Special Method Names in Python

5

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__str__

__repr__

__eq__

__bool__

Method invoked automatically when an object is constructed

Method invoked by str() and print()

Method invoked to display an object as a Python expression

Method invoked by ==, to compare two objects

Method invoked to convert an object to True or False

>>> t0 = Transaction(0, 20, 5)
>>> t1 = Transaction(1, 5, 5)
>>> str(t1)
'1: no change'
>>> t0 == t1
False
>>> bool(t0)
True

Same
behavior
using

methods

>>> t1.__str__()
'1: no change'
>>> t0.__eq__(t1)
False
>>> t0.__bool__()
True

Class Practice

(Modified) Spring 2023 Midterm 2 Question 2(a)
class Letter:
 def __init__(self, contents: str):

 self.contents = contents

 def send(self):

 if self.sent:

 print(self, 'was already sent.')

 else:
 print(self, 'has been sent.’)

 return ______________________________

 def __repr__(self):
 return f'Letter({repr(self.contents)})'

7

 """A letter receives an all-caps reply.

 >>> hi = Letter('Hello, World!')
 >>> hi.send()
 Letter('Hello, World!') has been sent.
 Letter('HELLO, WORLD!')
 >>> hi.send()
 Letter('Hello, World!') was already sent.
 >>> Letter('Hey').send().send()
 Letter('Hey') has been sent.
 Letter('HEY') has been sent.
 Letter('HEY')
 """

Implement the Letter class. A Letter has two
instance attributes: contents (a str) and sent
(a bool). Each Letter can only be sent once.
The send method prints whether the letter was
sent, and if it was, returns the reply, which
is a new Letter instance with the same
contents, but in all caps.
Hint: 'hi'.upper() evaluates to 'HI'.

self.sent = False

self.sent = True

Letter(self.contents.upper())

(Modified) Spring 2023 Midterm 2 Question 2(b)

class Numbered(Letter):

 number = 0

 def __init__(self, contents):

 super().__init__(contents)

 def __repr__(self):

 return f’#{___________}: {____________________}’

8

 """A numbered letter has a different
 repr method that shows its number.

 >>> hey = Numbered('Hello, World!')
 >>> hey.send()
 #0: Letter('Hello, World!') has been sent.
 Letter('HELLO, WORLD!')
 >>> Numbered('Hi!').send()
 #1: Letter('Hi!') has been sent.
 Letter('HI!')
 >>> hey
 #0: Letter('Hello, World!')
 """

Implement the Numbered class. A Numbered letter
has a number attribute equal to how many
numbered letters have previously been
constructed. This number appears in its repr
string. Assume Letter is implemented correctly.

self.number = Numbered.number

Numbered.number += 1

super().__repr__()self.number

Dictionary/Recursion Practice

Make Change

def make_change(amount, coins):
 """Return a list of coins that sum to amount, preferring the smallest coins
 available and placing the smallest coins first in the returned list."""

10

coins is a dictionary from denominations to counts. Two nickels and a quarter is {5: 2, 25: 1}
remove_one(coins, amount) returns a dictionary with one fewer count:
 remove_one({5: 2, 25: 1}, 5) -> {5: 1, 25: 1} remove_one({5: 2, 25: 1}, 25) -> {5: 2}

>>> coins = {2: 2, 3: 2, 4: 3, 5: 1}
>>> make_change(8, coins)
[2, 2, 4]
>>> make_change(25, coins)
[2, 3, 3, 4, 4, 4, 5]

• What small initial choice can I make?

• What recursive call for each option?

Use a 2 or don’t
use a 2

make_change(25, {2: 2, 3: 2, 4: 3, 5: 1})

 Returns [2, 3, 3, 4, 4, 4, 5]

make_change(____, _______________________)

 Returns ____________________

use a 2

23 {2: 1, 3: 2, 4: 3, 5: 1}

[3, 3, 4, 4, 4, 5]

 if not coins:
 return None
 smallest = min(coins)
 rest = remove_one(coins, smallest)
 if amount < smallest:
 return None
 elif amount == smallest:

 return ___________
 else:
 result = make_change(________________, rest)
 if result:
 return ____________________
 else:
 return make_change(amount, rest)

Make Change

def make_change(amount, coins):
 """Return a list of coins that sum to amount, preferring the smallest coins
 available and placing the smallest coins first in the returned list."""

11

[smallest]

[smallest] + result

amount-smallest

{2: 2, 3: 2, 4: 3, 5: 1}25

smallest is 2

rest is {2: 1, 3: 2, 4: 3, 5: 1}

result is [3, 3, 4, 4, 4, 5]
23

[2] + [3, 3, 4, 4, 4, 5] -> [2, 3, 3, 4, 4, 4, 5]

coins is a dictionary from denominations to counts. Two nickels and a quarter is {5: 2, 25: 1}
remove_one(coins, amount) returns a dictionary with one fewer count:
 remove_one({5: 2, 25: 1}, 5) -> {5: 1, 25: 1} remove_one({5: 2, 25: 1}, 25) -> {5: 2}

>>> coins = {2: 2, 3: 2, 4: 3, 5: 1}
>>> make_change(8, coins)
[2, 2, 4]
>>> make_change(25, coins)
[2, 3, 3, 4, 4, 4, 5]

make_change(23, {2: 1, 3: 2, 4: 3, 5: 1})
 Returns [3, 3, 4, 4, 4, 5]

