
Tail Calls

Announcements

Interpreting Scheme

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator) & Eval(operand) of calls
• Apply(procedure, arguments)
• Eval(sub-expression) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

Creates a new
environment each time

a user-defined
procedure is applied

Project 4

Pairs in Project 4: Scheme

Tokenization/Parsing: Converts text into Python representation of Scheme expressions:

• Numbers are represented as numbers

• Symbols are represented as strings

• Lists are represented as instances of the Pair class

Evaluation: Converts Scheme expressions to values while executing side effects:

• scheme_eval(expr, env) returns the value of an expression in an environment

• scheme_apply(procedure, args) applies a procedure to its arguments

• The Python function scheme_apply returns the return value of the procedure it applies

6

https://cs61a.org/proj/scheme/ (released on Wed.)

(Demo)

https://cs61a.org/proj/scheme/

Dynamic Scope

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope: The parent of a frame is the environment in which a procedure was defined

Dynamic scope: The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame

Dynamic scope: The parent for f's frame is g's frame

Error: unknown identifier: y

13

mu

Special form to create dynamically
scoped procedures (you will implement
mu special form in Project 4 Scheme)

8

Global frame

f (λ (x) ...)

g (λ (x y) ...)

μ

f1

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Space Efficiency

Space and Environments

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

10

Active environments:

• Environments for any function calls currently being evaluated

• Parent environments of functions named in active environments

Fibonacci Space Consumption

11

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Fibonacci Space Consumption

12

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Has an active environment
Can be reclaimed
Hasn't yet been created

fib takes linear space. (Demo)
pythontutor.com/
composingprograms.html#code=def%20fib%28n%29%3A%0A%20%20%20%20if%20n%20%3D%3D%200%20or%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20fib%28n-2%29%20%2B%20fib%28n-1%29%0A%20%20%20%20%20%20%20%20%0Afib%286
%29&mode=display&origin=composingprograms.js&cumulative=false&py=3&rawInputLstJSON=[]&curInstr=1

Tail Recursion

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

Name-value bindings are permanent.

Advantages of functional programming:

• The value of an expression is independent of the order in which sub-expressions are
evaluated

• Sub-expressions can safely be evaluated in parallel or only on demand (lazily)

• Referential transparency: The value of an expression does not change when we substitute
one of its subexpression with the value of that subexpression

But... no for/while statements! Can we make recursion efficient? Yes!

14

(Demo)

Recursion and Iteration in Python

Time Space

def fact_k(n, k):
 if n == 0:
 return k
 else:
 return fact_k(n - 1, n*k)

def fact_k(n, k):
 while n > 0:
 n, k = n - 1, k * n
 return k

In Python, recursive calls always create new active frames.

fact_k(n, k) computes: n! * k

15

Linear Linear

Linear Constant

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the
execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure."

(define (fact_k n k)
 (if (= n 0) k
 (fact_k (- n 1)
 (* k n))))

def fact_k(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

How? Eliminate the middleman!

16

Should use resources like Time Space

(Demo)

pythontutor.com/composingprograms.html#code=def%20factorial%28n,%20k%29%3A%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%20k%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20factorial%28n-1,%20k*n%29%0A%20%20%20%20%0Afactorial%284,%2010%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

Linear Constant

Tail Calls

(define (fact-k n k)

 (if (= n 0) k

 (fact-k (- n 1)

 (* k n))))

Tail Calls, Tail Contexts, Tail Recursion

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression (or procedure definition)

• Sub-expressions 2 & 3 in a tail context if expression

• All non-predicate sub-expressions in a tail context cond

• The last sub-expression in a tail context and, or, begin, or let

A recursive procedure is tail recursive if all of its recursive calls are tail calls

18

(define fact-k (lambda (n k)

 (if (= n 0) k

 (fact-k (- n 1)

 (* k n)))))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

19

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Recursive call is a tail call

Break: 5 minutes

Tail Recursion Examples

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

22

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 #f
 (if (= v (car s))
 #t
 (contains (cdr s) v))))

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 #f
 (if (contains (cdr s) (car s))
 #t
 (has-repeat (cdr s)))))

;; Return whether s has any repeated elements.
(define (has-repeat2 s)
 (if (null? s)
 #f
 (if (contains (cdr s) (car s))
 #t
 (if (has-repeat2 (cdr s))
 #t
 #f))))

Tail Recursion Practice: sum-digits

(Demo)

Tail Recursion with Scheme Lists

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)
 (cons (car s) r))))
 (reverse-iter s nil))

24

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Tail Recursion Techniques

Base case should return the complete answer (rather than a partial solution).

Define a helper with an extra parameter to keep track of progress so far.

Sketch an iterative solution (e.g. in Python) – names that are iteratively updated need to

be tracked as function arguments in recursion.

Verify all recursive calls are tail calls.

25

(Demo)

