
Decomposition (Order of Growth & Linked List Practice)

Announcements

Order of Growth Practice

Match each function to its order of growth

4

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

def search_sorted(s, v):
 """Return whether v is in the sorted list s.

 >>> evens = [2*x for x in range(50)]
 >>> search_sorted(evens, 22)
 True
 >>> search_sorted(evens, 23)
 False
 """
 if len(s) == 0:
 return False
 center = len(s) // 2
 if s[center] == v:
 return True
 if s[center] > v:
 rest = s[:center]
 else:
 rest = s[center + 1:]
 return search_sorted(rest, v)

Match each function to its order of growth

5

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

def near_pairs(s):
 """Return the length of the longest contiguous
 sequence of repeated elements in s.
 >>> near_pairs([3, 5, 2, 2, 4, 4, 4, 2, 2])
 3
 """
 count, max_count, last = 0, 0, None
 for i in range(len(s)):
 if count == 0 or s[i] == last:
 count += 1
 max_count = max(count, max_count)
 else:
 count = 1
 last = s[i]
 return max_count

def max_sum(s):
 """Return the largest sum of a contiguous
 subsequence of s.
 >>> max_sum([3, 5, -12, 2, -4, 4, -1, 4, 2, 2])
 11
 """
 largest = 0
 for i in range(len(s)):
 total = 0
 for j in range(i, len(s)):
 total += s[j]
 largest = max(largest, total)
 return largest

Linked Lists Practice

Linked List Notation

7

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

s = Link(3, Link(4, Link(5)))

3 4 5

>>> s = Link(2, Link(3, Link(4 , Link(5))))

>>> t = Link(2, Link(3, Link(Link(4) , Link(5))))

>>> print(s)

<2 3 4 5>

>>> print(t)

<2 3 <4> 5>

Nested Linked Lists

8

3 5

4

2

3 4 52

Nested Linked Lists

9

>>> s = Link(Link(8), Link(Link(4, Link(6, Link(Link(7)))), Link(5)))
>>> print(s)
<<8> <4 6 <7>> 5>
>>> s.first.first
8
>>> s.rest.first.rest.rest.first
Link(7)
>>> s.rest.first.rest.rest.first.first
7

5

4 6

8 7

s:

s.first:

s.rest: s.rest.rest:

s.rest.first:

s.rest.first.rest:

s.rest.first.rest.rest:

s.rest.first.rest.rest.first:

Recursion and Iteration

10

def length(s):
 """The number of elements in s.

 >>> length(Link(3, Link(4, Link(5))))
 3
 """

 if s is Link.empty:

 return 0

 else:

 return __________________________

def length(s):
 """The number of elements in s.

 >>> length(Link(3, Link(4, Link(5))))
 3
 """

 k = ____

 while _____________________:

 s, k = s.rest, _________

 return k1 + length(s.rest)

0

s is not Link.empty

k + 1

Many linked list processing functions can be written both iteratively and recursively

Recursive approach:
• What recursive call do you make?
• What does this recursive call do/return?
• How is this result useful in solving the
problem?

Iterative approach:
• Describe a process that solves the problem.
• Figure out what additional names you need
to carry out this process.

• Implement the process using those names.

Constructing a Linked List

Build the rest of the linked list, then combine it with the first element.

11

3 4 5

def range_link(start, end):
 """Return a Link containing consecutive
 integers from start up to end.

 >>> range_link(3, 6)
 Link(3, Link(4, Link(5)))
 """

 if start >= end:

 return Link.empty

 else:

 return ___

def range_link(start, end):
 """Return a Link containing consecutive
 integers from start to end.

 >>> range_link(3, 6)
 Link(3, Link(4, Link(5)))
 """

 s = Link.empty

 k = _________

 while ___________:

 s = Link(k, s)

 return s

Link(start, range_link(start + 1, end))

end - 1

k >= start

k -= 1

s = Link.empty
s = Link(5, s)
s = Link(4, s)
s = Link(3, s)

Linked List Mutation

To change the contents of a linked list, assign to first and rest attributes

Example: Append x to the end of non-empty s

>>> t = Link(3, Link(4, Link(5)))
>>> append(t, 6)
>>> t
Link(3, Link(4, Link(5, Link(6))))

12

3 4 5

Global Frame

t

f1: append p=G

s

x 6

6

s = s.rest

s.rest = Link(x)

Recursion and Iteration

Many linked list processing functions can be written both iteratively and recursively

13

Recursive approach:
• What recursive call do you make?
• What does this recursive call do/return?
• How is this result useful in solving the
problem?

def append(s, x):
 """Append x to the end of non-empty s.
 >>> append(s, 6) # returns None!
 >>> print(s)
 <3 4 5 6>
 """

 if ___________________________:

 append(_______, ____)

 else:

s.rest is not Link.empty

s.rest x

s.rest = Link(x)

Iterative approach:
• Describe a process that solves the problem.
• Figure out what additional names you need
to carry out this process.

• Implement the process using those names.

def append(s, x):
 """Append x to the end of non-empty s.
 >>> append(s, 6) # returns None!
 >>> print(s)
 <3 4 5 6>
 """

 while ____________________________:

s.rest is not Link.empty

s = s.rest

s.rest = Link(x)

3 4 5 6

Global Frame

t

f1: pop p=G

s

i

Example: Pop
Implement pop, which takes a linked list s and positive integer i. It removes and returns
the element at index i of s (assuming s.first has index 0).

14

def pop(s, i):
 """Remove and return element i from linked list s for positive i.
 >>> t = Link(3, Link(4, Link(5, Link(6))))
 >>> pop(t, 2)
 5
 >>> pop(t, 2)
 6
 >>> pop(t, 1)
 4
 >>> t
 Link(3)
 """
 assert i > 0 and i < length(s)

 for x in range(_______):

 s = s.rest

 return _____________

i - 1

result = s.rest.first

s.rest = s.rest.rest

result

2

result 5

