Efficiency
Announcements
Tree Class
Tree Class

A Tree has a label and a list of branches; each branch is a Tree.

```python
class Tree:
    def __init__(self, label, branches=[]):
        self.label = label
        for branch in branches:
            assert isinstance(branch, Tree)
        self.branches = list(branches)

def fib_tree(n):
    if n == 0 or n == 1:
        return Tree(n)
    else:
        left = fib_tree(n-2)
        right = fib_tree(n-1)
        fib_n = left.label + right.label
        return Tree(fib_n, [left, right])

def tree(label, branches=[]):
    for branch in branches:
        assert is_tree(branch)
    return [label] + list(branches)
def label(tree):
    return tree[0]
def branches(tree):
    return tree[1:]
def fib_tree(n):
    if n == 0 or n == 1:
        return tree(n)
    else:
        left = fib_tree(n-2)
        right = fib_tree(n-1)
        fib_n = label(left) + label(right)
        return tree(fib_n, [left, right])
```

4
Tree Practice
Example: Count Twins

Implement twins, which takes a Tree t. It returns the number of pairs of sibling nodes whose labels are equal.

def twins(t):
 """Count the pairs of sibling nodes with equal labels."
 count = 0
 n = len(t.branches)
 for i in range(n-1):
 for j in range(i+1, n):
 if t.branches[i].label == t.branches[j].label:
 count += 1
 return count + sum([twins(b) for b in t.branches])
Spring 2023 Midterm 2 Question 4(b)

You have already implemented `exclude(t, x)`, which takes a Tree instance `t` and a value `x`. It returns a Tree containing the root node of `t` as well as each non-root node of `t` with a label not equal to `x`. The parent of a node in the result is its nearest ancestor node that is not excluded. The input `t` is not modified.

Implement `remove`, which takes a Tree instance `t` and a value `x`. It removes all non-root nodes from `t` that have a label equal to `x`, then returns `t`. The parent of a node in `t` is its nearest ancestor that is not removed.

```python
def remove(t, x):
    # Remove all non-root nodes labeled x from t.

    >>> t = Tree(1, [Tree(2, [Tree(2), Tree(3)]), Tree(4)])
    >>> remove(t, 2)
    Tree(1, [Tree(3), Tree(4)])
    >>> remove(t, 3)
    Tree(1, [Tree(4)])

    t.branches = exclude(t, x).branches
    return t
```

Measuring Efficiency
Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

(Demo)
Memoization
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}  # Keys are arguments that map to return values
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized  # Same behavior as f, if f is a pure function
```

(Demo)
Memoized Tree Recursion

Call to fib
- Found in cache
- Skipped

```
Call to fib(5)
  Found in cache
  fib(4)
    fib(3)
      fib(2)
        fib(1)
          fib(0)
            0
            1
          fib(1)
            1
        fib(1)
          fib(0)
            0
            1
      fib(2)
        fib(0)
          0
          1
    fib(2)
      fib(0)
        0
        1
  fib(3)
    fib(2)
      fib(0)
        0
        1
    fib(1)
      fib(1)
        fib(0)
          0
          1
      fib(1)
        1
    fib(2)
      fib(0)
        0
        1
```

Skipped
Orders of Growth
Common Orders of Growth

Exponential growth. E.g., recursive \textit{fib}
Incrementing \(n \) multiplies \textit{time} by a constant

Quadratic growth.
Incrementing \(n \) increases \textit{time} by \(n \) times a constant

Linear growth.
Incrementing \(n \) increases \textit{time} by a constant

Logarithmic growth.
Doubling \(n \) only increments \textit{time} by a constant

Constant growth. Increasing \(n \) doesn't affect \textit{time}
Definition. A prefix sum of a sequence of numbers is the sum of the first \(n \) elements for some positive length \(n \).

(1 pt) What is the order of growth of the time to run \(\text{prefix}(s) \) in terms of the length of \(s \)? Assume append takes one step (constant time) for any arguments.

```python
def prefix(s):
    "Return a list of all prefix sums of list s."
    t = 0
    result = []
    for x in s:
        t = t + x
        result.append(t)
    return result
```