
Midterm Examples

Announcements

Trees

From Discussion 5 (Updated to be about the Tree class)

For a Tree instance t:
• Its root label can be any value, and t.label evaluates to it.
• Its branches are trees, and t.branches evaluates to a list of branches.
• It is a leaf if it has no branches, and t.is_leaf() returns True.
• An identical tree can be constructed with Tree(t.label, t.branches).
• You can call functions that take trees as arguments, such as height(t).
• That's how you work with trees. No t == x or t[0] or x in t or list(t), etc.
• To modify a Tree instance t, you can:
• Change its label: t.label = ...
• Change its branches: t.branches = ... or t.branches.append(...)
• Modify one of its branches: t.branches[0].label = ...

4

Fall 2017 CS 61A Midterm 2 Q5(a)
Definition. A pile (of leaves) for a tree t with no repeated leaf labels is a dictionary in
which the label for each leaf of t is a key, and its value is the path from that leaf to the
root. Each path from a node to the root is either an empty tuple, if the node is the root,
or a two-element tuple containing the label of the node’s parent and the rest of the path
(i.e., the path to the root from the node’s parent).

5

def pile(t):
 """Return a dict that contains every path from a leaf to the root of tree t.

 >>> pile(Tree(5, [Tree(3, [Tree(1), Tree(2)]), Tree(6, [Tree(7)])]))
 {1: (3, (5, ())), 2: (3, (5, ())), 7: (6, (5, ()))}
 """
 p = {}
 def gather(u, path):
 if u.is_leaf():

 for b in u.branches:

 return p

p[u.label] =

gather(b,)

gather(t,)

Students received 49% of the points on average.
26% of students answered the question correctly.

Recursive call:
Build a longer path

Base case:
Put a leaf label in ppath

(u.label, path)

() u has a label that can
be added to the path

all paths
have ()

Start at
the top

Fall 2017 CS 61A Midterm 2 Q5(b)
Implement Path, a class whose __init__ method takes a Tree t and a leaf_label. Assume all
leaf labels of t are unique. When a Path is printed, labels in the path from the root to the
leaf of t with label leaf_label are displayed, separated by dashes.

6

class Path:
 """A path through a tree from the root to a leaf, identified by its leaf label.

 >>> a = Tree(5, [Tree(3, [Tree(1), Tree(2)]), Tree(6, [Tree(7)])])
 >>> print(Path(a, 7), Path(a, 2))
 5-6-7 5-3-2
 """
 def __init__(self, t, leaf_label):
 self.pile, self.end = pile(t), leaf_label

 def __str__(self):

 path, s = ___________________________________ , _____________________________________

 while path:

 path, s = _________________________________ , ___________________________________

 return s

Students received 53% of the points on average.
24% of students answered the question correctly.

self.pile[self.end] str(self.end)

path[1] str(path[0]) + '-' + s

{..., 7: (6, (5, ()))}
 (5, ())
 ()

path is
a nested
tuple

s is a string

Build s
from this

Fall 2017 CS 61A Midterm 2 Q5(a) Revisited
Definition. A pile (of leaves) for a tree t with no repeated leaf labels is a dictionary in
which the label for each leaf of t is a key, and its value is the path from that leaf to the
root. Each path from a node to the root is either an empty tuple, if the node is the root,
or a two-element tuple containing the label of the node’s parent and the rest of the path
(i.e., the path to the root from the node’s parent). Represent the path as a list of labels.

7

def pile(t):
 """Return a dict that contains every path from a leaf to the root of tree t.

 >>> pile(Tree(5, [Tree(3, [Tree(1), Tree(2)]), Tree(6, [Tree(7)])]))
 {1: [5, 3, 1], 2: [5, 3, 2], 7: [5, 6, 7]}
 """
 p = {}
 def gather(u, path):
 if u.is_leaf():

 for b in u.branches:

 return p

p[u.label] = path

gather(b, (u.label, path))

gather(t, ())

+ [u.label]

path + [u.label])

[])

OR
p[u.label] = path

gather(b, path + [b.label])

gather(t, [t.label])

Recursion

From Discussion 4 (With Some Extra Tips)

Don't start trying to write code right away. Instead, start by describing the
recursive case in words. Some examples:
• In fib from lecture, the recursive case is to add together the previous two
Fibonacci numbers.

• In count_partitions from lecture, the recursive case is to partition
n-m using parts up to size m and to partition n using parts up to size m-1.

9

How to get the recursive description right?
Use abstraction: Pick an example, then figure out what a recursive call will do
for you on that example, not by reading the code, but by reading the docstring.
Implement a choice: Most tree recursion problems involve making a sequence of
choices (e.g., use a partition of size m or don't). The recursive case implements
one of those choices; recursion implements the rest.

How to get the base cases right?
Once you know what the recursive case is, find all the simple cases it leads to.

Fall 2017 CS 61A Midterm 2 Q4(c)
Implement ways, which takes two values start and end, a non-negative integer k, and a list
of one-argument functions actions. It returns the number of ways of choosing functions
f1, f2, ..., fj from actions such that f1(f2(...(fj(start)))) equals end and j ≤ k. The
same action function can be chosen multiple times. If a sequence of actions reaches end,
then no further actions can be applied (see first example below).

10

Students received 71% of the points on average.
41% of students answered the question correctly.

def ways(start, end, k, actions):
 """Return the number of ways of reaching end from start by taking up to k actions.

 >>> ways(-1, 1, 5, [abs, lambda x: x+2]) # abs(-1) or -1+2, but not abs(abs(-1))
 2
 >>> ways(1, 10, 5, [lambda x: x+1, lambda x: x+4]) # 1+1+4+4, 1+4+4+1, or 1+4+1+4
 3
 >>> ways(1, 20, 5, [lambda x: x+1, lambda x: x+4])
 0
 >>> ways([3], [2, 3, 2, 3], 4, [lambda x: [2]+x, lambda x: 2*x, lambda x: x[:-1]])
 3
 """
 if __:

 return 1

 elif __:

 return 0

 return ________([__ for f in actions])

start == end

k == 0

sum ways(f(start), end, k - 1, actions)

Choose an action# of ways starting with that action

def sums(n, k):
 """Return the ways in which K positive integers can sum to N.

 >>> sums(2, 2)
 [[1, 1]]
 >>> sums(2, 3)
 []
 >>> sums(4, 2)
 [[3, 1], [2, 2], [1, 3]]
 >>> sums(5, 3)
 [[3, 1, 1], [2, 2, 1], [1, 3, 1], [2, 1, 2], [1, 2, 2], [1, 1, 3]]
 """
 if __:

 return ___
 y = []
 for x in __:

 y.extend([______________________ for s in sums(_________, ___________)])
 return y

k == 1

Fall 2016 CS 61A Midterm 2 Q7(a)
Implement sums, which takes two positive integers n and k. It returns a list of lists
containing all the ways that a list of k positive integers can sum to n (in any order).

11

Students received 39% of the points on average.
4% of students answered the question correctly.

[[n]]

range(1, n)

s + [x] n - x k - 1

Choose the first
number

Ways of completing the listChoose a wayBuild the list

Fall 2016 CS 61A Midterm 2 Q7(b)

Implement sums, which takes two positive integers n and k. It returns a list of lists
containing all the ways that a list of k positive integers can sum to n (in any order).

12

Students received 17% of the points on average.
1% of students answered the question correctly.

f = lambda x, y: (x and [______________ for z in y] + f(_______, _______)) or []

def sums(n, k):
 """Return the ways in which K positive integers can sum to N."""

 g = lambda w: (w and f(___)) or [[]]

 return [v for v in g(k) if sum(v) == n]

[x] + z x - 1 y

n, g(w-1)

Lists of k positive integers

x: a max number
y: a list of lists of numbers
Put each number up to x at the front of each list in y

Note: Nowadays, this question would have been labeled an A+ question and worth 0 points.

