
Concurrency

Announcements

Concurrency On Your Laptop

(Demo)

Processes

Processes run mostly independently, share some resources (e.g., network connection)

python3 my_code.py starts one process

4

Computer: Wheeler Hall

Process: One classroom
(Wheeler 150)

Another Process:
Wheeler 210

Classrooms run
independently, share

bathrooms, exit door, alarm

Today: concurrency
within one Python

process

Kay overlaps making lecture
slides with writing discussion

Kay works on lecture slides
while John writes discussion

Pratham starts Q1, then
starts Q2, then finishes Q1

Skylar works on Q1 while
Pratham works on Q2

Concurrency:
task execution overlaps

(task B starts before task
A finishes) Parallelism:

Multiple tasks run
at the same time

Single Python Process has a Global Interpreter Lock.
Only one line of Python code at a time

(Demo)

Waiting for Input / Output

6

Time

Task 1:
fetch a midterm

Waiting for
midterm to

transfer over
network

Task 2:
fetch a midterm

Waiting for
midterm to

transfer over
network

Do Work While Waiting on IO

7

Time

Task 1:
fetch a midterm

Waiting for
midterm to

transfer over
network

Task 2:
fetch a midterm

Waiting for
midterm to

transfer over
network

Concurrency: Start Task 2
while Task 1 is waiting

Task 3:
fetch a midterm

Waiting for
midterm to

transfer over
network

What happens if Task 3
finishes waiting while Task 2

is still running?

Task 2 needs to stop before
Task 3 can start againToday: How can we

describe what runs when?

Python: Coroutines

Coroutines: cooperative multitasking

Code runs until it voluntarily uses await

8

await doordash_boba()

One coroutine
runs at a time

At most one person
has the talking stick

Person voluntarily gives
up the talking stick

“I don’t need the talking
stick while I wait for my

Boba delivery”

await cupcake_delivery()

await asyncio.sleep(600)

async def kay():

This code is
designed to be run

concurrently! It may
await

(Demo)

Python process
Wheeler 150

Python: Coroutines

9

async def apollo(seconds):
 await asyncio.sleep(seconds)

asyncio.run(apollo(600)) Give up control until
asyncio.sleep(seconds)

finishes

Coroutines:

apollo()

asyncio.sleep(600)

Waiting
for

Waiting
until 600s
elapses

Python: Coroutines

10

Coroutines:

start() Waiting
for

Waiting until
600s elapses

async def apollo():
 await asyncio.sleep(600)

async def kay():
 await doordash_boba()

async def harry():
 await cupcake()

async def start():
 await asyncio.gather(
 apollo(),
 kay(),
 harry(),
)

asyncio.run(start())

Run all of the awaitables
(e.g., coroutines)

concurrently

Give up control until
asyncio.sleep(600)

finishes

A coroutine function
(may await!)

Start an event loop
(environment that knows how
to handle concurrent work)

apollo()

kay()

harry()

Waiting for
doordash_boba()

Waiting for
cupcake()

Examples

11

async def sleep1():
 await asyncio.sleep(2)
 await asyncio.sleep(2)
 await asyncio.sleep(2)

asyncio.run(sleep1())

async def sleep2():
 await asyncio.gather(
 asyncio.sleep(2),
 asyncio.sleep(2),
 asyncio.sleep(2))

asyncio.run(sleep2())

async def blocking_sleep(seconds):
 time.sleep(seconds)

async def sleep3():
 await asyncio.gather(
 blocking_sleep(2),
 blocking_sleep(2),
 blocking_sleep(2))

asyncio.run(sleep3())

pollev.com/cs61a

How long does each coroutine take to run?

http://pollev.com/cs61a

How can you make a non-async function run concurrently?

12

async def new_blocking_sleep(seconds):
 await asyncio.to_thread(lambda: time.sleep(seconds))

async def sleep4():
 await asyncio.gather(new_blocking_sleep(2),
 new_blocking_sleep(2),
 new_blocking_sleep(2))

asyncio.run(sleep4())

Run in a separate
thread! Python
decides when it
starts and stops

Fetching Midterms Concurrently

(Demo)

What’s hard about concurrency?

How do you describe concurrent code?
 await, async, asyncio.gather(), asyncio.run(), asyncio.to_thread()

How does concurrent code share state?

14

Shared State: In General

15

Pratham Skylar

Changing shared
state concurrently

is hard!

Shared State: Coroutines

16

Pratham Skylar
I’m ready to write

branches!

After you await,
the state may
have changed

Shared State: Coroutines

17

async def pratham(worksheet):
 if worksheet.stuck():
 result = await text_problem_to_friend()
 worksheet.write(result)

After await,
worksheet may be

different!

(Demo)

Concurrency in one slide

How do you describe concurrent code?
 await, async, asyncio.run(), asyncio.to_thread()

To run things concurrently: asyncio.gather()

How does concurrent code share state?
 Until you call await, nothing will change
 Mutable objects may be different after await

18

How do you program
thousands of
computers?

