Lecture 27: Interpreting Scheme

A Scheme interpreter is essentially an extension of the calculator:

- A component known as the reader (scheme_read) reads Scheme values (atoms and pairs).
- Since Scheme expressions and programs are a subset of Scheme values, no further parsing is necessary.
- A function scheme_eval evaluates Scheme expressions.
 - Atoms are its base cases.
 - For function calls, it uses a function scheme_apply, as for the calculator.

Reading

- The project skeleton defines a class Buffer (in buffer.py), whose purpose is to take sequences of tokens (strings) and concatenate them into a single sequence in which one can either look at and, if desired, remove, one token at a time.
- These sequences of tokens come from a method tokenize_lines which breaks sequences of strings into tokens:
  ```python
  >>> from scheme_tokens import tokenize_lines
  >>> from buffer import Buffer
  >>> L = tokenize_lines(['(define x", " (+ y 3))"'], ['b = Buffer(L)']
  >>> b = Buffer(L)
  >>> b.remove_front()
  '('
  >>> b.remove_front()
  'define'
  ```

Apply

- The interpreter function scheme_apply(func, args) has the effect of allowing one to construct and evaluate function calls.
- It has the essentially the same effect that func(*args) does in Python programs.
- In the interpreter, scheme_apply itself has two cases:
 - Either func is a primitive, built-in function, in which case, its code is part of the interpreter, or
 - func is a user-defined function, in which case its code is stored in it as a Scheme expression, and is evaluated by eval.
- So there is a "recursive dance" back and forth between scheme_eval, and scheme_apply.

scheme_read

- Finally, the function scheme_read, which you will complete, pulls tokens off a Buffer until it has a complete Scheme expression:
  ```python
  >>> from scheme_tokens import tokenize_lines
  >>> from buffer import Buffer
  >>> from scheme_reader import scheme_read
  >>> L = tokenize_lines(['(define x", " (+ y 3))", "(define y 42)"'])
  >>> b = Buffer(L)
  >>> scheme_read(b)
  Pair('define', Pair('x', Pair('+', Pair('y', Pair(3, nil))), nil)))
  >>> scheme_read(b)
  Pair('define', Pair('y', Pair(42, nil)))
  ```
Evaluation for Scheme

- Simple expressions are evaluated as for the calculator.
- A Scheme expression consisting of a number simply evaluates to that number. It is self-evaluating.
- A function call \((E_0 \ E_1 \ \cdots \ E_n)\) is evaluated by recursively evaluating the \(E_i\) and then using scheme_apply.
- But Scheme has a number of other cases to handle.

Aside: accessing scheme_eval and scheme_apply in Scheme

- In full Scheme, the functions scheme_eval and scheme_apply are both available to the programmer in the form of the two built-in functions apply and eval:
  ```scheme
  >>> (define L '(1 2 3))
  >>> (apply + L)
  6
  >>> (eval (list '+ 1 2) (scheme-report-environment 5))
  3
  >>> (eval '(+ 1 2) (scheme-report-environment 5))
  3
  ```
- The second argument here, as for scheme_eval, is an environment defining symbols’ values.
- In official Scheme, however, there is no way to get the current environment (the one containing your own definitions), although various implementations do provide a way.

Evaluation of Symbols

- In Scheme expressions, most symbols represent identifiers, which we did not encounter in the calculator.
- Obviously, we need more information to evaluate a symbol than just the symbol itself.
- Fortunately, we already know what’s needed: an environment.
- Thus, to evaluate a Scheme expression, we will need both the expression itself and the environment in which to evaluate it.
- As it happens, exactly the same kind of structure as in Python—environment frames linked by parent pointers—is what we need to interpret Scheme.
- This is because Scheme uses nearly the same scope rules as Python does.
- Earlier dialects of Lisp, however, used a different kind of scope rule.

Static and Dynamic Scoping

- The scope rules of a language are the rules governing what names (identifiers) mean at each point in a program.
- We call the scope rules of Scheme (and Python)—those that are described by environment diagrams as we’ve been using them—static or lexical scoping.
- But in original Lisp, scoping was dynamic.
- Example (using classic Lisp notation):
  ```lisp
  (defun f (x) ;; Like (define (f x) ...) in Scheme
    (g))
  (defun g ()
    (* x 2))
  (let ((x 3))
    (g)) ;; ==> 6 Using x from (let ((x 3)) ...)
  (f 2) ;; ==> 4 Using x from (defun f (x) ...)
  (g)) ;; ==> 6 Using x from (let ((x 3)) ...)
  ```
- That is, the meaning of \(x\) depends on the most recent and still active definition of \(x\), even where the reference to \(x\) is not nested inside the defining function.
Remaining Cases

- We've dealt with function calls, numbers, and symbols.
- This leaves only the **special forms**.
- All special forms lists indicated by their first symbols:

  ```lisp
  (quote EXPR) ; Easy: return EXPR unchanged
  (lambda (ARGS) EXPR)
  (define ID EXPR)
  (define (ID ARGS) EXPR)
    ; Same as (define ID (lambda (ARGS) EXPR))
  (if EXPR EXPR-IF-TRUE EXPR-IF-FALSE)
  (begin EXPR1 . . . EXPRn)
  (cond ( (COND-EXPR1 VAL-EXPR1))
       (COND-EXPR2 VAL-EXPR2) . . .)
  (and EXPR, EXPR,...)
  (or EXPR, EXPR,...)
  ```

Lambda and Functions

- In the interpreter, evaluating the lambda special form returns a value of some type for representing functions.
- Its content is dictated by what `scheme.apply` will need:
  ```lisp
  (lambda (ARGS) EXPR)
  - The list ARGS.
  - The body EXPR.
  - The parent environment: The environment in which the lambda expression or define that created the function value was evaluated.
  ```

Other Special Forms

- Handling the other special forms is pretty straightforward:
- The **if** form is typical: to evaluate

  ```lisp
  (if EXPR-IF-TRUE EXPR-IF-FALSE)
  - Evaluate EXPR.
  - If returned value is false (#t), evaluate EXPR-IF-FALSE and return its value.
  - Otherwise, evaluate EXPR-IF-TRUE and return its value.
  ```

Getting Iteration via Recursion to Work

- The interpreter so far uses recursion to get Scheme recursion.
- Doesn't work for long iterations (stack memory overflow).
- As an optional problem, you'll have the chance to complete the **tail-recursion optimization**, where tail calls use (in effect) iteration instead.
What's the Problem?

- Let's look at a very simple tail-recursive loop in Scheme and a call:

  ```scheme
  (define (adder so-far n)
    ; Return SO-FAR + 1 + 2 + 3 + ... + N.
    (if (<= n 0) so-far (adder (+ so-far n) (- n 1))))
  (adder 0 2000)
  ```

- As currently described, our interpreter takes the following steps (indentation shows depth of calls):

 where `[adder]` denotes the function value

  ```scheme
  (lambda (so-far n) (if (<= n 0) so-far (adder (+ so-far n) (- n 1))))
  ```

- You can see this rapidly gets out of hand. What to do?

Tail Contexts

- In this function:

  ```scheme
  (define (f x)
    (displayln x)
    (if (> x 0)
        (begin (displayln '+) (* x 2))
        (- x)))
  ```

 - The expressions
 - `(> x 0)`
 - `(displayln '+)`

 are not in tail contexts.

 - After they produce their values, some other computation produces the value of the construct that contains them.

Tail Contexts (II)

```scheme
(define (f x)
  (displayln x)
  (if (> x 0)
      (begin (displayln '+) (* x 2))
      (- x)))
```

- The expressions
 - `(> x 0)`
 - `(displayln '+)`

 are not in tail contexts.

- After they produce their values, some other computation produces the value of the construct that contains them.

Crucial Observation

- Consider the functions

  ```scheme
  (define (first x) (some-stuff) (second (+ x 1)) (other-stuff))
  (define (second y) (third y))
  (define (third z) (* z 2))
  ```

 - The call of `third` is in a tail context in `second`.

 - Suppose we call `(first 1)`. Normally, `second` would call `third`, which would call `*`.

 - But suppose instead that somehow `second` persuaded `first` to replace its evaluation of `(second 2)` with an evaluation of `(third y)`, but using the local environment set up for the call to `second` (with `y=2`).

 - Since the call to `third` is in a tail context, this replacement must produce the same value as the call to `second`.

 - We call this tail-call optimization: we have effectively removed the call to `second`, so the call only goes two deep, rather than three.

 - In fact, by repeating the process, we can have first replace the calls to `second` and `third` with the evaluation of `(* z 2)` in a local environment with `z=2`.
Tail-Call Optimization of Tail Recursions

- Let's revisit

 \[
 \text{(define (adder so-far n)} \\
 \quad ; \text{Return SO-FAR + 1 + 2 + 3 + \ldots + N.}} \\
 \quad \text{(if (<= n 0) so-far (adder (+ so-far n) (- n 1))))} \\
 \text{(adder 0 2000)} \\
 \]

- Now evaluation can proceed something like this:
 - We call `scheme eval` on `(adder 0 2000)` in the global environment.
 - It tells us to instead call `scheme eval` on
 \[
 \text{(if (<= n 0) so-far (adder (+ so-far n) (- n 1))))}
 \]
 in an environment with so-far=0, n=2000.
 - That eventually tells us to call `scheme eval` on
 \[
 \text{(if (<= n 0) so-far (adder (+ so-far n) (- n 1))))}
 \]
 - And so forth.
 - We (i.e., the implementation) don't have to keep track of a whole
 stack of active recursive function calls.

Tail-Call Optimization in the Project

- As an optional problem, you can make your project do this optimization
 so that you interpreter will run iterations of arbitrary length.
- Our device for "persuading` scheme eval to replace a call with a
 different expression is to have it return a special value (of class
 Unevaluated) that contains an expression that was in a tail context,
 plus the environment for evaluating that expression.
- If `scheme eval` gets back an Unevaluated object, and needs a real
 value, it can simply call itself on the expression and environment
 in that object.