
Lecture 27: Interpretating Scheme

A Scheme interpreter is essentially an extension of the calculator:

• A component known as the reader (scheme read) reads Scheme values
(atoms and pairs).

• Since Scheme expressions and programs are a subset of Scheme
values, no further parsing is necessary.

• A function scheme eval evaluates Scheme expressions.

– Atoms are its base cases.

– For function calls, it uses a function scheme apply, as for the
calculator.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 1

Reading

• The project skeleton defines a class Buffer (in buffer.py), whose
purpose is to take sequences of tokens (strings) and concatenate
them into a single sequence in which one can either look at and, if
desired, remove, one token at a time.

• These sequences of tokens come from a method tokenize lines

which breaks sequences of strings into tokens:
>>> from scheme tokens import tokenize lines

>>> from buffer import Buffer

>>> L = tokenize lines(["(define x", " (+ y 3))"])

>>> b = Buffer(L)

>>> b.current()

'('

>>> b.remove front()

'('

>>> b.remove front()

'define'

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 2

scheme read

• Finally, the function scheme read, which you will complete, pulls tokens
off a Buffer until it has a complete Scheme expression:

>>> from scheme tokens import tokenize lines

>>> from buffer import Buffer

>>> from scheme reader import scheme read

>>> L = tokenize lines(["(define x", " (+ y 3))", "(define y 42)"])

>>> b = Buffer(L)

>>> scheme read(b)

Pair('define', Pair('x', Pair(Pair('+', Pair('y', Pair(3, nil))), nil)))

>>> scheme read(b)

Pair('define', Pair('y', Pair(42, nil)))

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 3

Apply

• The interpreter function scheme apply(func, args) has the effect
of allowing one to construct and evaluate function calls.

• It has the essentially the same effect that func(*args) does in
Python programs.

• In the interpreter, scheme apply itself has two cases:

– Either func is a primitive, built-in function, in which case, its code
is part of the interpreter, or

– func is a user-defined function, in which case its code is stored
in it as a Scheme expression, and is evaluated by eval.

• So there is a “recursive dance” back and forth between scheme eval,
and scheme apply.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 4

Evaluation for Scheme

• Simple expressions are evaluated as for the calculator.

• A Scheme expression consisting of a number simply evaluates to
that number. It is self-evaluating.

• A function call (E0 E1 · · · En) is evaluated by recursively evaluating
the Ei and then using scheme apply.

• But Scheme has a number of other cases to handle.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 5

Aside: accessing scheme eval and scheme apply in
Scheme

• In full Scheme, the functions scheme eval and scheme apply are
both available to the programmer in the form of the two built-in
functions apply and eval:

>>> (define L '(1 2 3))

>>> (apply + L)

6

>>> (eval (list '+ 1 2) (scheme-report-environment 5))

3

>>> (eval '(+ 1 2) (scheme-report-environment 5))

3

• The second argument here, as for scheme eval, is an environment
defining symbols’ values.

• In official Scheme, however, there is no way to get the current
environment (the one containing your own definitions), although various
implementations do provide a way.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 6

Evaluation of Symbols

• In Scheme expressions, most symbols represent identifiers, which
we did not encounter in the calculator.

• Obviously, we need more information to evaluate a symbol than just
the symbol itself.

• Fortunately, we already know what’s needed: an environment.

• Thus, to evaluate a Scheme expression, we will need both the expression
itself and the environment in which to evaluate it.

• As it happens, exactly the same kind of structure as in Python—environment
frames linked by parent pointers—is what we need to interpret Scheme.

• This is because Scheme uses nearly the same scope rules as Python
does.

• Earlier dialects of Lisp, however, used a different kind of scope
rule.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 7

Static and Dynamic Scoping

• The scope rules of a language are the rules governing what names
(identifiers) mean at each point in a program.

• We call the scope rules of Scheme (and Python)—those that are
described by environment diagrams as we’ve been using them—static
or lexical scoping.

• But in original Lisp, scoping was dynamic.

• Example (using classic Lisp notation):

(defun f (x) ;; Like (define (f x) ...) in Scheme

(g))

(defun g ()

(* x 2))

(let ((x 3))

(g) ;; ===> 6 Using x from (let ((x 3)) ...)

(f 2) ;; ===> 4 Using x from (defun f (x) ...)

(g)) ;; ===> 6 Using x from (let ((x 3)) ...)

• That is, the meaning of x depends on the most recent and still active
definition of x, even where the reference to x is not nested inside
the defining function.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 8

Remaining Cases

• We’ve dealt with function calls, numbers, and symbols.

• This leaves only the special forms.

• All special forms lists indicated by their first symbols:

(quote EXPR) ; Easy: return EXPR unchanged

(lambda (ARGS) EXPR)
(define ID EXPR)
(define (ID ARGS) EXPR)

; Same as (define ID (lambda (ARGS) EXPR))

(if EXPR EXPR-IF-TRUE EXPR-IF-FALSE)
(begin EXPR1 . . . EXPRn) ; Evaluate all EXPRi, return last

(cond ((COND-EXPR1 VAL-EXPR1)

(COND-EXPR2 VAL-EXPR2) ...)

(and EXPR1 EXPR2 . . .)
(or EXPR1 EXPR2 . . .)

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 9

Lambda and Functions

• In the interpreter, evaluating the lambda special form returns a
value of some type for representing functions.

• Its content is dictated by what scheme apply will need:

(lambda (ARGS) EXPR)

– The list ARGS.

– The body EXPR.

– The parent environment: The environment in which the lambda
expression or define that created the function value was evaluated.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 10

Other Special Forms

• Handling the other special forms is pretty straightforward:

• The if form is typical: to evaluate

(if EXPR EXPR-IF-TRUE EXPR-IF-FALSE)

– Evaluate EXPR.

– If returned value is false (#f), evaluate EXPR-IF-FALSE and
return its value.

– Otherwise, evaluate EXPR-IF-TRUE and return its value.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 11

Getting Iteration via Recursion to Work

• The interpreter so far uses recursion to get Scheme recursion.

• Doesn’t work for long iterations (stack memory overflow).

• As an optional problem, you’ll have the chance to complete the tail-recursion
optimization, where tail calls use (in effect) iteration instead.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 12

What’s the Problem?

• Let’s look at a very simple tail-recursive loop in Scheme and a call:

(define (adder so-far n)

; Return SO-FAR + 1 + 2 + 3 + ... + N.

(if (<= n 0) so-far (adder (+ so-far n) (- n 1))))

(adder 0 2000)

• As currently described, our interpreter takes the following steps
(indentation shows depth of calls):

scheme_eval of (adder 0 2000), which returns

scheme_apply [adder] to [0, 2000], which returns

scheme_eval of (adder 2000 1999), which returns

scheme_apply [adder] to [2000, 1999], which calls

scheme_eval of (adder 3999 1998), which returns

scheme_apply [adder] to [3999, 1998]

etc.

where [adder] denotes the function value
(lambda (so-far n) (if (<= n 0) so-far (adder (+ so-far n) (- n 1))))

• You can see this rapidly gets out of hand. What to do?

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 13

Tail Contexts

• In this function:
(define (f x)

(displayln x)

(if (> x 0)

(begin (displayln '+) (* x 2))

(- x)))

we say that the expressions

* (if (> x 0) (begin (displayln '+) (* x 2)) (- x)))

* (begin (displayln '+) (* x 2))

* (* x 2)

* (- x)

are in tail contexts, because if they are evaluated, their values
provide the values of the constructs that contain them.

• (The Scheme construct (begin E1 E2 · · ·En) simply evaluates each
Ei in turn and produces the result of En as its value.)

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 14

Tail Contexts (II)

(define (f x)

(displayln x)

(if (> x 0)

(begin (displayln '+) (* x 2))

(- x)))

• The expressions

* (> x 0)

* (displayln '+)

are not in tail contexts.

• After they produce their values, some other computation produces
the value of the construct that contains them.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 15

Crucial Observation

• Consider the functions
(define (first x) (some-stuff) (second (+ x 1)) (other-stuff))

(define (second y) (third y))

(define (third z) (* z 2))

• The call of third is in a tail context in second.

• Suppose we call (first 1). Normally, second would call third, which
would call *.

• But suppose instead that somehow second persuaded first to replace
its evaluation of (second 2) with an evaluation of (third y), but
using the local environment set up for the call to second (with y=2).

• Since the call to third is in a tail context, this replacement must
produce the same value as the call to second.

• We call this tail-call optimization: we have effectively removed the
call to second, so the call only goes two deep, rather than three.

• In fact, by repeating the process, we can have first replace the
calls to second and third with the evaluation of (* z 2) in a local
environment with z=2.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 16

Tail-Call Optimization of Tail Recursions

• Let’s revisit
(define (adder so-far n)

; Return SO-FAR + 1 + 2 + 3 + ... + N.

(if (<= n 0) so-far (adder (+ so-far n) (- n 1))))

(adder 0 2000)

• Now evaluation can proceed something like this:

– We call scheme eval on (adder 0 2000) in the global environment.

– It tells us to instead call scheme eval on
(if (<= n 0) so-far (adder (+ so-far n) (- n 1))))

in an environment with so-far=0, n=2000.

– That eventually tells us to call scheme eval on
(if (<= n 0) so-far (adder (+ so-far n) (- n 1))))

in an environment with so-far=2000, n=1999.

– And so forth.

– We (i.e., the implementation) don’t have to keep track of a whole
stack of active recursive function calls.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 17

Tail-Call Optimization in the Project

• As an optional problem, you can make your project do this optimization
so that you interpreter will run iterations of arbitrary length.

• Our device for “persuading” scheme eval to replace a call with a
different expression is to have it return a special value (of class
Unevaluated) that contains an expression that was in a tail context,
plus the environment for evaluating that expression.

• If scheme eval gets back an Unevaluated object, and needs a real
value, it can simply call itself on the expression and environment in
that object.

Last modified: Tue Apr 6 00:40:38 2021 CS61A: Lecture #27 18

	Lecture 27: Interpretating Scheme
	Reading
	scheme_read
	Apply
	Evaluation for Scheme
	Aside: accessing scheme_eval and scheme_apply in Scheme
	Evaluation of Symbols
	Static and Dynamic Scoping
	Remaining Cases
	Lambda and Functions
	Other Special Forms
	Getting Iteration via Recursion to Work
	What's the Problem?
	Tail Contexts
	Tail Contexts (II)
	Crucial Observation
	Tail-Call Optimization of Tail Recursions
	Tail-Call Optimization in the Project

