
Scheme

Announcements

Scheme

Scheme is a Dialect of Lisp

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."  
 
- Richard Stallman, created Emacs & the first free variant of UNIX

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."  
 
- Richard Stallman, created Emacs & the first free variant of UNIX

• "The only computer language that is beautiful." 
 
 -Neal Stephenson, DeNero's favorite sci-fi author

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."  
 
- Richard Stallman, created Emacs & the first free variant of UNIX

• "The only computer language that is beautiful." 
 
 -Neal Stephenson, DeNero's favorite sci-fi author

• "The greatest single programming language ever designed." 
 
 -Alan Kay, co-inventor of Smalltalk and OOP (from the user interface video)

4

Scheme Expressions

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines  

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines  

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines  

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines  

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines  

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

(Demo)

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines  

(spacing doesn’t matter)

Special Forms

Special Forms

7

Special Forms

A combination that is not a call expression is a special form:

7

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

7

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:

(1) Evaluate the

predicate expression

(2) Evaluate either
the consequent or

alternative

(Demo)

Scheme Interpreters

(Demo)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

 (lambda (<formal-parameters>) <body>)

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the  
x+y+z2 procedure

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the  
x+y+z2 procedure

10

12

More Special Forms

Cond & Begin

12

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

(cond ((> x 10) (print 'big))

 ((> x 5) (print 'medium))

 (else (print 'small)))

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

(cond ((> x 10) (print 'big))

 ((> x 5) (print 'medium))

 (else (print 'small)))

(cond ((> x 10) 'big)

 ((> x 5) 'medium)

 (else 'small))

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

(cond ((> x 10) (print 'big))

 ((> x 5) (print 'medium))

 (else (print 'small)))

(cond ((> x 10) 'big)

 ((> x 5) 'medium)

 (else 'small))

(print

))

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

(cond ((> x 10) (print 'big))

 ((> x 5) (print 'medium))

 (else (print 'small)))

(cond ((> x 10) 'big)

 ((> x 5) 'medium)

 (else 'small))

(print

))

The begin special form combines multiple expressions into one expression

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

(cond ((> x 10) (print 'big))

 ((> x 5) (print 'medium))

 (else (print 'small)))

(cond ((> x 10) 'big)

 ((> x 5) 'medium)

 (else 'small))

(print

))

The begin special form combines multiple expressions into one expression

if x > 10:

 print('big')

 print('guy')

else:

 print('small')

 print('fry')

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

(cond ((> x 10) (print 'big))

 ((> x 5) (print 'medium))

 (else (print 'small)))

(cond ((> x 10) 'big)

 ((> x 5) 'medium)

 (else 'small))

(print

))

The begin special form combines multiple expressions into one expression

if x > 10:

 print('big')

 print('guy')

else:

 print('small')

 print('fry')

(cond ((> x 10) (begin (print 'big) (print 'guy)))

 (else (begin (print 'small) (print 'fry))))

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

12

if x > 10:

 print('big')

elif x > 5:

 print('medium')

else:

 print('small')

(cond ((> x 10) (print 'big))

 ((> x 5) (print 'medium))

 (else (print 'small)))

(cond ((> x 10) 'big)

 ((> x 5) 'medium)

 (else 'small))

(print

))

The begin special form combines multiple expressions into one expression

if x > 10:

 print('big')

 print('guy')

else:

 print('small')

 print('fry')

(cond ((> x 10) (begin (print 'big) (print 'guy)))

 (else (begin (print 'small) (print 'fry))))

(if (> x 10) (begin

 (print 'big)

 (print 'guy))

 (begin

 (print 'small)

 (print 'fry)))

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

13

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

13

a = 3

b = 2 + 2

c = math.sqrt(a * a + b * b)

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

13

a = 3

b = 2 + 2

c = math.sqrt(a * a + b * b)
a and b are still bound down here

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

13

a = 3

b = 2 + 2

c = math.sqrt(a * a + b * b)

(define c (let ((a 3)

 (b (+ 2 2)))

 (sqrt (+ (* a a) (* b b)))))

a and b are still bound down here

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

13

a = 3

b = 2 + 2

c = math.sqrt(a * a + b * b)

(define c (let ((a 3)

 (b (+ 2 2)))

 (sqrt (+ (* a a) (* b b)))))

a and b are still bound down here a and b are not bound down here

Turtle Graphics

Drawing Stars

(forward 100) or (fd 100) draws a line

(right 90) or (rt 90) turns 90 degrees

15

(Demo)

Sierpinski's Triangle

(Demo)

