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What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be 
powerful and elegant."  
 
- Richard Stallman, created Emacs & the first free variant of UNIX

• "The only computer language that is beautiful." 
 
 -Neal Stephenson, DeNero's favorite sci-fi author

• "The greatest single programming language ever designed." 
 
 -Alan Kay, co-inventor of Smalltalk and OOP (from the user interface video)
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