Interpreters

Announcements

Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, %, /) followed by 0
or more expressions: (+ 12 3) (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

Expression Expression Tree Representation as Pairs

first [rest first [rest first [rest first |rest

3
(+ 4 5) |

%k irs res irs res firs res irs res
(% 6 7 8)) s]|)l M [[e L7 % i

first [rest first |rest first [rest
+ | = 4 | = 5 |nil

Calculator Semantics

The value of a calculator expression is defined recursively.
Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.
+: Sum of the arguments
*: Product of the arguments
-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

Expression Expression Tree
(+5 61
(x 2 3) /
(x 2 55)) + 5|6 50
w AN
*x 2 3 x 2 5 5

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

Implementation Language Semantics

def calc_eval(exp):
A number evaluates...

if isinstance(exp, (int, float)): Recursive call ‘o itself
o itse

return exp returns a number

. , for each operand | A call expression evaluates...
elif isinstance(exp, Pair):

to its argument values
arguments = exp.rest.map(calc_eval)

...................... combined by an operator

A A

else:
_ T+, =1, A Scheme list
raise TypeError 'x', '/' of numbers

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

Implementation Language Semantics

def calc_apply(operator, args):

if operator == '+': +:
return reduce(add, args, 0) Sum of the arguments
elif operator == '-': -
elif operator == 'x':
elif operator == '/"':
else:

raise TypeError

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages 1is an interactive interpreter
1. Print a prompt
Read text input from the user

Parse the text input into an expression

2

3

4. Evaluate the expression

5 If any errors occur, report those errors, otherwise
6

Print the value of the expression and repeat

(Demo)

Interpreting Scheme

The Structure of an Interpreter

Base cases: Eval
e Primitive values (numbers)
* Look up values bound to symbols

Recursive calls:

* Eval(operator) & Eval(operand) of calls
e Apply(procedure, arguments)

e Eval(sub-expression) of special forms

/\
4)
Requires an
environment
fo{ SKmb°1 Base cases: Apply
OOKUp e Built-in primitive procedures
S J

Recursive calls:
Creates a new * Eval(body) of user-defined procedures
environment each time

a user—defined
procedure is applied

Project 4

Pairs in Project 4: Scheme
https://cs6la.org/proj/scheme/
Tokenization/Parsing: Converts text into Python representation of Scheme expressions:
* Numbers are represented as numbers
 Symbols are represented as strings
e Lists are represented as instances of the Pair class
Evaluation: Converts Scheme expressions to values while executing side effects:
 scheme_eval(expr, env) returns the value of an expression in an environment
* scheme_apply(procedure, args) applies a procedure to its arguments

« The Python function scheme_apply returns the return value of the procedure it applies

(Demo)

Discussion Question: The Symbol of a Define Expression

Return the symbol of a define expression. There are two formats for define expressions:
(define x (+ 2 3)) or (define (f x) (+ x 3))
def symbol(exp):

"""Given a define expression exp, return the symbol defined.

>>> def_x = read_line("(define x (+ 2 3))")

>>> def_f = read_line("(define (f x) (+ x 3))")

>>> symbol(def_x)

X
>>> symbol(def_f)

Ifl

assert exp.first == 'define' and exp.rest is not nil and exp.rest.rest is not nil
signature = _exp.rest.first

if scheme_symbolp(signature):
return signature
else:

return signature.first

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:
*Symbols are looked up in the current environment

*Self-evaluating expressions are returned as values

*All other legal expressions are represented as Scheme lists, called combinations

-

&

Special forms

are identified

by the first
list element

J

(define (demo s) (if (null? s) '(3) (cons (car s)

(<operator> <operand 0> ...

<operand k>)

(demo (list 1 2))

Any combination
that is not a
known special
form is a call

expression

~

J

(demo

(cdr s)))))

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user—-defined procedures

(Lambda (<formal-parameters>) <body>)

(Lambda (x) (x x x))

class LambdaProcedure:
def __init__ (self, formals, body, env):
self.formals = FOrMals «eereremmmmmmrrnreenesseeneaeanen A scheme list of symbols
se'l_f.body — body .. A SCheme llst Of expressions

SELT.CNV = @MV srrrrrererrrmmsssnnimissnnnrinssens s s ssanss s A Frame instance

Frames and Environments

A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y 3
Z 5

fl: [parent=g]

2
Z 4

(Demo)

