
Interpreters

Announcements

Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3) (/ 3 (+ 4 5))

4

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as PairsExpression Tree

* 3

+ 4 5 * 6 87

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+: Sum of the arguments

*: Product of the arguments

-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

5

(+ 5
 (* 2 3)
 (* 2 5 5))

Expression Expression Tree

+ 5

* 2 3 * 2 55

506

61

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

7

def calc_eval(exp):

 if isinstance(exp, (int, float)):

 return exp

 elif isinstance(exp, Pair):

 arguments = exp.rest.map(calc_eval)

 return calc_apply(exp.first, arguments)

 else:

 raise TypeError

A number evaluates...

A call expression evaluates...

 to its argument values

 to itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

8

def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError

 Sum of the arguments
+:

Implementation Language Semantics

 ...
-:

...

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter

1. Print a prompt

2. Read text input from the user

3. Parse the text input into an expression

4. Evaluate the expression

5. If any errors occur, report those errors, otherwise

6. Print the value of the expression and repeat

10

(Demo)

Interpreting Scheme

The Structure of an Interpreter

12

Apply

Eval

Recursive calls:
• Eval(operator) & Eval(operand) of calls
• Apply(procedure, arguments)
• Eval(sub-expression) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

Creates a new
environment each time

a user-defined
procedure is applied

Project 4

Pairs in Project 4: Scheme

Tokenization/Parsing: Converts text into Python representation of Scheme expressions:

• Numbers are represented as numbers

• Symbols are represented as strings

• Lists are represented as instances of the Pair class

Evaluation: Converts Scheme expressions to values while executing side effects:

• scheme_eval(expr, env) returns the value of an expression in an environment

• scheme_apply(procedure, args) applies a procedure to its arguments

• The Python function scheme_apply returns the return value of the procedure it applies

14

https://cs61a.org/proj/scheme/

(Demo)

Discussion Question: The Symbol of a Define Expression

Return the symbol of a define expression. There are two formats for define expressions:
(define x (+ 2 3)) or (define (f x) (+ x 3))
def symbol(exp):
 """Given a define expression exp, return the symbol defined.
 >>> def_x = read_line("(define x (+ 2 3))")
 >>> def_f = read_line("(define (f x) (+ x 3))")
 >>> symbol(def_x)
 'x'
 >>> symbol(def_f)
 'f'
 """
 assert exp.first == 'define' and exp.rest is not nil and exp.rest.rest is not nil
 signature = _________________
 if scheme_symbolp(signature):
 return signature
 else:
 return _________________

15

exp.rest.first

signature.first

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:

• Symbols are looked up in the current environment

• Self-evaluating expressions are returned as values

• All other legal expressions are represented as Scheme lists, called combinations

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are identified
by the first
list element

Any combination
that is not a
known special
form is a call

expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

17

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user-defined procedures

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

19

A scheme list of symbols
A scheme list of expressions
A Frame instance

Frames and Environments

A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

20

(Demo)

