
Calculator

Announcements

Hog Strategy Contest

Each submitted strategy will play against all other submissions. The player to go first
will be determined by a flip of a fair coin. A submission scores a match point each time it
has an expected win rate strictly above 50.0001%. We will rank submissions based on the
number of matches they won.

3

Third Place: Alexander Tian and Miles Hua

First Place (tie): (Kevin Yang and Davis Jin) and (Brian Zhou and Lin Jiang)

One more contest coming up: Scheme Recursive Art

Fall 2015
Recursive Art Contest

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

7

(Demo)

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists

(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for
which a true value is the result

(apply f s): call a procedure f with the elements of a list s as its arguments

9

(define count (list 1 2 3 4))

(define beats (map ______________________________ count)

(define rhythm (______ _______ beats))

(1 2 3 4) ; count
((and a 1) (and a 2) (and a 3) (and a 4)) ; beats
(and a 1 and a 2 and a 3 and a 4) ; rhythm

(lambda (x) (list 'and 'a x))

apply append

(Demo)

pollev.com/cs61a

http://pollev.com/cs61a

Cons Count

Return how many cons cells appear in the diagram for a value s.

10

(define (cons-count s)

 (if (list? s)

 (__ (length s)

 (apply + __________________))

 _______________________________))

(map cons-count s)

+

0

A "cons cell" is what
cons creates & returns

pollev.com/cs61a

http://pollev.com/cs61a

Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3) (/ 3 (+ 4 5))

12

Expressions are represented as Scheme lists (Link instances) that encode tree structures.

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as Link objectsExpression Tree

* 3

+ 4 5 * 6 87

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+: Sum of the arguments

*: Product of the arguments

-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

13

(+ 5
 (* 2 3)
 (* 2 5 5))

Expression Expression Tree

+ 5

* 2 3 * 2 55

506

61

(Demo)

Exceptions (in Python)

Raise Statements

Python exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RecursionError -- Too many recursive calls

15

(Demo)

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

16

Exceptions Example: Reduce

f is ...
 a two-argument function that returns a first argument
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

18

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

(Demo)

Reduce Practice

Implement sum_squares, which returns the sum of the square of each number in a list s.

19

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

def sum_squares(s):
 """Return the sum of squares of the numbers in s.

 >>> sum_squares([3, 4, 5]) # 3*3 + 4*4 + 5*5
 50
 """
 return reduce(_______________________ , s, 0) lambda x, y: x + y * y

pollev.com/cs61a

http://pollev.com/cs61a

Reducing a Linked List

A reduce that takes a function, a Scheme list represented as a Link, and an initial value.

20

def reduce(fn, s, initial):
 """Reduce a Scheme list s made of Links using fn and an initial value.

 >>> reduce(add, Link(1, Link(2, Link(3, nil))), 0) ; (+ (+ (+ 0 1) 2) 3)
 6
 """
 if s is nil:
 return initial

 return __ reduce(fn, s.rest, fn(initial, s.first))

class Link:
empty = ()

 def __init__(self, first, rest):
 self.first = first
 self.rest = rest

nil = Link.empty

pollev.com/cs61a

http://pollev.com/cs61a

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

22

def calc_eval(exp):

 if isinstance(exp, (int, float)):

 return exp

 elif isinstance(exp, Link):

 arguments = map_link(calc_eval, exp.rest)

 return calc_apply(exp.first, arguments)

 else:

 raise TypeError

A number evaluates to...

A call expression evaluates to...

 its argument values

 itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

23

def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError

 Sum of the arguments
+:

Implementation Language Semantics

 ...
-:

...

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter

1. Print a prompt

2. Read text input from the user

3. Parse the text input into an expression

4. Evaluate the expression

5. If any errors occur, report those errors, otherwise

6. Print the value of the expression and repeat

25

(Demo)

