Calculator

Announcements

Hog Strategy Contest

Each submitted strategy will play against all other submissions. The player to go first
will be determined by a flip of a fair coin. A submission scores a match point each time it
has an expected win rate strictly above 50.0001%. We will rank submissions based on the
number of matches they won.

Third Place: Alexander Tian and Miles Hua

First Place (tie): (Kevin Yang and Davis Jin) and (Brian Zhou and Lin Jiang)

One more contest coming up: Scheme Recursive Art

. Recursive Art Contest

hﬁ&g&gﬁgi_gg%.

n..ﬁn..n..n..n..s.ﬁe vmme.e_ﬁ y 1!

o5 s OO Qe e

3O IRRE
& & 'ﬂt 1

_— uigi!!!.

a5 O e O O e 5
B3255

-
!

v
: + 3 :
m” HH uuﬂ;.unneﬁg -..::- i
n‘ d =
ﬂ n;n._ﬂ;n._n;uu. i n;n;m;n._GSQL .

!

Ot 0 04 0 0 O

Fall 2015

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) _ _
> (1list a b) No sign of “a” and “b” in the
(1 2) resulting value
BN
Quotation is used to refer to symbols directly in Lisp.
: b Short for (quote a), (quote b):
list ’

?a(b;s a 'b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

b c) (Demo)

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists
(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for
which a true value is the result

(apply f s): call a procedure f with the elements of a list s as its arguments

(Demo)
(12 3 4) ; count
((and a 1) (and a 2) (and a 3) (and a 4)) ; beats
(and a 1 and a 2 and a 3 and a 4) ; rhythm

(define count (list 1 2 3 4))
(define beats (map _(lambda (x) (list 'and 'a x)) (qynt)

(define rhythm (@PPLly append peats))

[ﬁAollev.com csb6la J

http://pollev.com/cs61a

Cons Count

Return how many cons cells appear in the diagram for a value s.
scm> '((c s) ((6)) 1 (a))
(define (cons-count s) ((c s) () 1 ()
(if (list? s) scm> ("(Cc s) ((6)) 1 (addd
(* (length s)
(apply + (map cons—count s)))

0))

N\

{ pollev.com/cs6la J

A "cons cell" is what
cons creates & returns

http://pollev.com/cs61a

Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)
A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, %, /) followed by 0
or more expressions: (+ 12 3) (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Link instances) that encode tree structures.

Expression Expression Tree Representation as Link objects

first [rest first [rest first [rest first |rest

3
(+ 4 5) |

%k irs res irs res firs res irs res
(% 6 7 8)) s]|)l M [[e L7 % i

first [rest first |rest first [rest
+ | = 4 | = 5 |nil

Calculator Semantics

The value of a calculator expression is defined recursively.
Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.
+: Sum of the arguments
*: Product of the arguments
-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

Expression Expression Tree
(+5 61
(x 2 3) /
(x 2 55)) + 5|6 50
w AN
*x 2 3 x 2 5 5

(Demo)

Exceptions (in Python)

Raise Statements

Python exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!"')

TypeError —— A function was passed the wrong number/type of argument
NameError —— A name wasn't found

KeyError —— A key wasn't found in a dictionary

RecursionError —— Too many recursive calls

(Demo)

Try Statements

Try statements handle exceptions

try:
<try suite>

except <exception class> as <name>:
<except suite>

Execution rule:
The <try suite> is executed first

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

Exceptions Example: Reduce

Reducing a Sequence to a Value

def reduce(f, s, initial):

"""Combine elements of s pairwise using f, starting with initial.

E.g., reduce(mul, [2, 4, 81, 1) is equivalent to mul(mul(mul(1l, 2), 4), 8).

>>> reduce(mul, [2, 4, 81, 1)
04

f is ...
a two-argument function that returns a first argument

S 1S ...
a sequence of values that can be the second argument

initial is ...
a value that can be the first argument

(Demo)

16,777,216
pow 64 E\
o[
o] |2
pow| 2]

*
LLE]

reduce(pow, [1, 2, 3, 4], i)

Reduce Practice

Implement sum_squares, which returns the sum of the square of each number in a list s.

def reduce(f, s, initial):
“""Combine elements of s pairwise using f, starting with initial.

E.g., reduce(mul, [2, 4, 81, 1) is equivalent to mul(mul(mul(1l, 2), 4), 8).

>>> reduce(mul, [2, 4, 8], 1)
04

def sum_squares(s):
"""Return the sum of squares of the numbers in s.

>>> sum_squares([3, 4, 5]1) # 3%3 + 4x4 + 5%5
50

return reduce(lambda x, y: x +y xy 5 @)

[iAollev.com csb6la J

http://pollev.com/cs61a

Reducing a Linked List

A reduce that takes a function, a Scheme list represented as a Link, and an initial value.

def reduce(fn, s, initial):
"""Reduce a Scheme list s made of Links using fn and an initial value.

>>> reduce(add, Link(1, Link(2, Link(3, nil))), ©) ; (+ (+ (+ @ 1) 2) 3)
6
if s is nil:

return initial

return reduce(fn, s.rest, fn(initial, s.first))
class Link: [igollev.com1cs61a J
empty = ()

def init (self, first, rest):
self.first = first
self.rest = rest

nil = Link.empty

http://pollev.com/cs61a

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

Implementation Language Semantics

def calc_eval(exp):

if isinstance(exp, (int, float)): Recursive call A number evaluates to...
return exp returns a number itself

elif isinstance(exp, Link): el Seel @pelrEne A call expression evaluates to...
arguments = map_link(calc_eval, exp.rest) its argument values
returnicalc_apply(exp.first, arguments) combined by an operator

else:
_ T+, =1, A Scheme list
raise TypeError 'x', '/' of numbers

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

Implementation Language Semantics

def calc_apply(operator, args):

if operator == '+': +:
return reduce(add, args, 0) Sum of the arguments
elif operator == '-': -
elif operator == 'x':
elif operator == '/"':
else:

raise TypeError

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages 1is an interactive interpreter
1. Print a prompt
Read text input from the user

Parse the text input into an expression

2

3

4. Evaluate the expression

5 If any errors occur, report those errors, otherwise
6

Print the value of the expression and repeat

(Demo)

